在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
想要学习大数据,一定要充分掌握大数据的核心技术:Hadoop、Strom、spark等等。Spark是一种与Hadoop像是的开源集群计算环境。它启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
1、Spark的核心是什么?
RDD是Spark的基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式来操作分布式数据集的抽象实现。RDD也是Spark非常核心的东西,它表示已被分区,不可变的并能够被并行操作的数据集合,不同的数据集格式对应不同的RDD实现。
RDD必须是可序列化的。RDD可以cache到内存中,每次对RDD数据集的操作之后的结果,都可以存放到内存中,下一个操作可以直接从内存中输入,省去了MapReduce大量的磁盘IO操作。这对于迭代运算比较常见的机器学习算法, 交互式数据挖掘来说,效率提升比较大。
2、Spark的适用场景有哪些?
由于RDD的特性,Spark不适用那种异步细粒度更新状态的应用,例如web服务的存储或者是增量的web爬虫和索引。就是对于那种增量修改的应用模型不适合。总的来说Spark的适用面比较广泛且比较通用。
3、Spark支持的编程语言有哪几种?
Spark通过与编程语言集成的方式暴露RDD的操作,类似于DryadLINQ和FlumeJava,每个数据集都表示为RDD对象,对数据集的操作就表示成对RDD对象的操作。Spark主要支持的编程语言是Scala、java、python。
1)Scala。Spark使用Scala开发,默认使用Scala作为编程语言。编写Spark程序比编写Hadoop MapReduce程序要简单的多,SparK提供了Spark-Shell,可以在Spark-Shell测试程序。
2)Java。Spark支持Java编程,但对于使用Java就没有了Spark-Shell这样方便的工具,其它与Scala编程是一样的,因为都是JVM上的语言,Scala与Java可以互操作,Java编程接口其实就是对Scala的封装。
3)Python。现在Spark也提供了Python编程接口,Spark使用py4j来实现python与java的互操作,从而实现使用python编写Spark程序。Spark也同样提供了pyspark,一个Spark的python shell,可以以交互式的方式使用Python编写Spark程序。
相对于MapReduce,Spark凭借基于内存计算和可以直接读写Hadoop上任何格式数据的优势,进行批处理时更加高效,并有更低的延迟。
以上就是大数据学习中关于spark的学习总结。大数据的学习中核心技术非常多。包含Linux、Zookeeper、Hadoop、Redis、HDFS、MapReduce、Hive、lmpala、Hue、Oozie、Storm、Kafka、Spark、Scala、SparkSQL、Hbase、Flink、机器学习等。正式因为大数据技术比较复杂所以现在大数据岗位的薪资一直处于非常高的水平。如果想了解更多关于大数据学习的知识,可以参考博学谷大数据课程。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
Hadoop基础知识快速入门
学习大数据的同学都知道,Hadoop是一个很重要的知识点。本文主要概括了Hadoop的定义、优势和作用,带大家了解Hadoop基础知识能够快速入门。
7733
2019-08-08 20:13:01
女生学大数据很累吗?女生适合学大数据吗
女生学大数据很累吗?女生适合学大数据吗?很多人会疑惑女孩子学大数据会不会比男孩子要吃力,其实做大数据没有男女之分,女生做大数据开发也很厉害,只是愿不愿意学没有行不行。 大数据支持很多开发语言,但企业用的最多的还是JAVA,所以有一定Java语言的基础当相于有了基石,可以自己先在电脑上搭建个Hadoop环境练练手。
11884
2019-09-03 10:24:20
数据仓库与数据库的区别是什么?
相信大数据学习者对于数据仓库与数据库并不陌生,两者都是通过数据库软件实现存放数据的地方,从这个意义上来看,它们似乎没有多大的差别。但是再深入一点分析,我们会发现无论是从数据量还是作用来讲,两者的区别都是巨大的。为了更清楚的分辨数据仓库与数据库,下面我们具体来聊聊数据仓库与数据库的区别。
15461
2020-06-05 11:06:23
分布式系统学习笔记
分布式系统其实就是为了处理更多数据而存在的。对于大数据学习者来讲,分布式系统入门还是很容易的。本文为大家总结整理了一篇关于分布式系统的学习笔记,主要内容有分布式系统的定义、常用分布式方案以及分布式和集群的对比,下面一起来看看吧~
5282
2020-06-09 11:12:49
Pandas如何分块处理大文件?
在处理快手的用户数据时,碰到600M的txt文本,用sublime打开蹦了,用pandas.read_table()去读竟然花了小2分钟,打开有3千万行数据。仅仅是打开,要处理的话不知得多费劲。解决方法:读取文件的函数有两个参数:chunksize、iterator。原理分多次不一次性把文件数据读入内存中。
5700
2020-08-14 16:16:47