在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
大数据工资一般多少?大数据目前作为朝阳行业,工资普遍较高,不同地区和不同岗位薪资待遇差别也较大。以北京这样的一线城市为例,月薪最低也有七千元,据最新统计,北京大数据工资拿一万左右的人群比例最高。下面小编就来分析一下大数据的职业发展。
由于大数据人才数量较少,因此大多数公司的数据部门一般都是扁平化的层级模式,大致分为数据分析师、资深研究员、部门总监3个级别。大公司可能按照应用领域的维度来划分不同团队,而在小公司则需要身兼数职。有些特别强调大数据战略的互联网公司则会另设最高职位—如阿里巴巴的首席数据官。这个职位的大部分人会往研究方向发展,成为重要数据战略人才。另一方面,大数据工程师对商业和产品的理解,并不亚于业务部门员工,因此也可转向产品部或市场部,乃至上升为公司的高级管理层。本文把大数据的职业发展路线大致划分成四大方向:数据分析,数据挖掘,数据产品,数据工程。
1、数据分析/数据运营/商业分析
职业发展:数据分析师,岗位职责要求你掌握常用的机器学习算法,面试首先推导一个决策树或者逻辑回归。入职后也是各类代码,和分析打交道的情况不多。一般属于运营部门,不少公司也称数据运营或者商业分析。这类岗位的职位描述一般是:负责和支撑各部门相关的报表;建立和优化指标体系;监控数据的波动和异常,找出问题;优化和驱动业务,推动数据化运营;找出可增长的市场或产品优化空间;输出专题分析报告。
商业/市场分析是另外一个方向,更多见于传统行业。你要开一家超市,你得考虑哪里开,这就要考虑居民密度,居民消费能力,竞争对手的多寡,步行交通距离,开车交通距离等。这些数据是宏观的大指标,往往靠搜索和调研完成,这是和互联网数据分析师最大的差异。若往其他分支发展,比如数据挖掘工程师,则要继续掌握Python和机器学习等。从业务型发展上来的好处是接地气,具备商业洞察力(天天搞报表,怎么可能不熟),这点是直接做数据挖掘,或者程序员转岗,所不具备的。新人,比较普适的发展路线是先成为一位数据分析师。积累相关的经验,在一两年后,决定往后的发展,是数据挖掘,还是专精数据分析成为管理岗。
薪资待遇:一般来说,在一线城市,干得好的数据分析师工资在一万五左右。
2、数据挖掘/算法专家
职业发展:这是技术向的数据岗,有些归类在研发部门,有些则单独成立数据部门。数据挖掘工程师要求更高的统计学能力、数理能力以及编程技巧。从概念上说,数据挖掘Data mining是一种方式,机器学习Machine Learning是一门方法/学科。机器学习主要是有监督和无监督学习,有监督又可划分成回归和分类,它们是从过去的历史数据中学习到一个模型,模型可以针对特定问题求解。
除此之外,还有一个领域,属于最优化问题的运筹学。当遇到的问题很难用机器学习的方法完成,而在最优化领域,则有遗传算法、模拟退火算法、蚁群算法等。实际的应用场景中,如外卖行业,如何寻找骑手效率最大化的最优路径,同样属于最优化,也是数据挖掘的工作范畴。数据挖掘工程师,除了掌握算法,同样需要编程能力去实现,不论R、Python、Scala/Java,至少掌握一种。模型的实施,往往也要求Hadoop/Spark的工程实践经验,精通SQL/Hive是必须的。
数据挖掘工程师,往后发展,称为算法专家。后者对理论要求更严苛,几乎都要阅读国外的前沿论文。方向不局限于简单的分类或者回归,还包括图像识别、自然语言处理、智能量化投顾这种复合领域。这里开始会对从业者的学校和学历提出要求,名校+硕士无疑是一个大优势,也有很多人直接做数据挖掘。深度学习则更前沿,它由神经网络发展而来,是机器学习的一个子集。因为各类框架开枝散叶,诸多模型百花齐放,也可以算一个全新的分支。除了要求熟悉TensorFlow, Caffe, MXNet等深度学习框架,对模型的应用和调参也是必备的,后者往往是划分普通人和大牛的天堑。
薪资待遇:算法专家和深度学习专家,薪资level会更高一级,一般对应于业务型的数据运营/分析总监,月薪一般在四万左右,发展的好的会更高。
3、数据产品经理
职业发展:这个岗位比较新兴,它有两种理解,一种是具备强数据分析能力的PM,一种是公司数据产品的规划者。前者,以数据导向优化和改进产品。在产品强势的公司,数据分析也会划归到产品部门,甚至运营也属于产品部。这类产品经理有更多的机会接触业务,属于顺便把分析师的活也干了,一专多能的典型。他们会运用不同的数据源,对用户的行为特征分析和挖掘,达到改进产品。最典型的场景就是AB测试。大到页面布局、路径规划、小到按钮的颜色和样式,均可以通过数据指标评估。此类数据产品经理,更多是注重数据分析能力,擅长用分析进行决策。数据是能力的一部分。
后者,是真正意义上的数据产品经理。在公司迈大迈强后,数据量与日俱增,此时会有不少数据相关的产品项目:包括大数据平台、埋点采集系统、BI、推荐系统、广告平台等。这些当然也是产品,自然需要提炼需求、设计、规划、项目排期,乃至落地。和C端注重用户体验不同,数据产品,更注重整体的分析能力和逻辑。除了产品经理最基础的Axure、Visio、MindManager等工具。往往还需要很多技术型的能力。比如了解BI/DW原理和实施、了解常用的推荐算法、了解机器学习模型等。这也很容易理解,C端要求你了解用户需求,而在数据端,主要用户就是数据。
从职业发展上看,数据分析师做数据产品经理更合适。普通的产品经理,对前端、后端的技术栈尚未熟悉,何况日新月异的数据栈。这个岗位,适合对数据特别感兴趣,但是数理天赋不高的职场人,那么以沟通、项目管理和需求规划为能力,也不错。
薪资待遇:数据产品经理月薪在一万五到两万不等,看自己怎么发展了。
4、数据工程师
职业发展:数据工程师其实更偏技术,从职业道路上看,程序员走这条路更开阔。因为数据挖掘需要了解算法/模型,理论知识要求过高,不少硕士和博士还过来抢饭碗,自己不擅长容易遇到天花板。选择更底层的工程实现和架构,也是出路。部分归属到技术部的数据分析师,虽然Title叫数据分析(其实应该叫数据分析开发工程师),很多工作也是围绕ETL/DW/BI进行,那么这就是标准的数据工程路线。
部分公司会将机器学习模型的部署和实现交给数据工程团队,这要求数据工程师熟悉sparkMLlib、Mahout此类框架。数据工程师,可以从数据分析师的SQL技能,往数据的底层收集、存储、计算、运维拓展。往后发展则是数据总监、或者数据架构师。因为数据分析出身,与纯技术栈的程序员比,思考会更贴合业务,比如指标背后的数据模型,但是技术底子的薄弱需要弥补。
薪资待遇:总体上来看,数据工程师薪资也不会低于数据挖掘/算法专家,最低也是3万起。
综上所述,大数据工资一般高于其他行业的同龄人。随着未来大数据时代的迅猛发展,其职业前景也是不可估量的。对大数据有学习兴趣的小伙伴,还在等什么,赶紧乘着这个风口努力学习吧,摆在眼前的是广阔的发展道路。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
零基础大数据培训就业方向多不多?
零基础大数据培训就业方向多不多?大数据就业方向有很多,比如ETL研发、Hadoop开发、可视化工具开发等,而且需求缺口较大。从招聘网站大数据人才的招聘信息来看,目前对于没有工作经验的大数据人才的薪资也在1万左右,同时大型互联网企业在招聘大数据人才的门槛比较低。
5479
2019-07-31 15:31:00
学数据挖掘技术能做哪些工作?可以从事哪些行业?
学数据挖掘技术能做哪些工作?可以从事哪些行业?随着大数据时代的来临,大数据早已渗透我们生活和工作的方方面面。尤其是数据挖掘更是被各行各业广泛应用,像互联网、电商、金融、医疗等等行业对掌握数据挖掘技术的人才更是有着相当优渥的报酬。至于数据挖掘的相关岗位更是选择多多,下面来具体了解一下吧!
7278
2019-10-15 10:29:58
大数据岗位介绍和职业规划分析
我们经常在谈论的大数据行业究竟是做什么的?相信这个问题绝大多数人都说不清楚。因为大数据行业是一个很广泛的概念,想要从事大数据行业的朋友可以有很多职业方向的选择。下面我将把大数据行业大致划分为五个方向的就业岗位,它们分别是数据管理专员、数据工程师、商业分析师、机器学习研究员/从业者和数据导向专业人员。然后一一为大家进行岗位介绍和职业规划的分析,感兴趣就接着看下去吧!
7780
2020-01-07 17:43:07
学大数据可以从事什么职业?大数据岗位有哪些?
大数据就业方向可以划分为三个大类:大数据开发、系统研发、大数据分析。基础岗位位:大数据开发工程师、大数据系统研发工程师、大数据分析师。大数据覆盖金融、医疗、电商、农业等各行各业,应用领域广泛。
6756
2020-09-23 10:02:32
如何成为高薪的复合型大数据人才?
对于职场人来说不想被淘汰,除了提升自己的核心技能之外还得成为复合型人才以此增强自己的职场竞争能力。职场人更应该打开自己,保持学习状态,增强学习的能力,随时准备好在工作中接受跨界的任务,甚至主动让自己成为链接的节点。
1215
2022-05-30 15:59:38