在线客服
扫描二维码
下载博学谷APP
扫描二维码
关注博学谷微信公众号
大数据工程师干不过35吗?事实上,大数据工程师现在十分吃香,而且工作经验越高越抢手,不存在“干不过35岁”的说法。如果大家真的掌握了大数据技术,其职业发展前景是完全不用担心的。

大数据为什么这么火?
与以往相比,我们除了有能力存储更多的数据量之外,还要面对更多的数据类型。这些数据的来源包括网上交易、网络社交活动、自动传感器、移动设备以及科学仪器等等。除了那些固定的数据生产源,各种交易行为还可能加快数据的积累速度。比如说,社交类多媒体数据的爆炸性增长就源于新的网上交易和记录行为。数据永远都在增长之中,但是,只有存储海量数据的能力是不够的,因为这并不能保证我们能够成功地从中搜寻出商业价值。
大数据有哪些岗位?
目前,大数据技术的应用在各行各业都取得了成绩不菲的的表现。无论是当下发展得如火如荼的电商行业,还是在一些传统行业,大数据技术都得到了广泛的应用,因此就业前景十分广阔。大数据的就岗位大致可以划分为技术和管理两个方向,具体岗位分工如下:
大数据开发工程师:负责公司大数据平台的开发和维护,负责大数据平台持续集成相关工具平台的架构设计与产品开发等。
数据分析师:进行数据搜集、整理、分析,针对数据分析结论给管理销售运营提供指导意义的分析意见。
数据挖掘工程师:商业智能,用户体验分析,预测流失用户等;需要过硬的数学和统计学功底以外,对算法的代码实现也有很高的要求。
数据库开发:设计,开发和实施基于客户需求的数据库系统,通过理想接口连接数据库和数据库工具,优化数据库系统的性能效率等。
数据管理:数据库设计、数据迁移、数据库性能管理、数据安全管理,故障检修问题、数据备份、数据恢复等。
数据科学家:清洗,管理和组织(大)数据,利用算法和模型提高数据处理效率、挖掘数据价值、实现从数据到知识的转换。
数据产品经理:把数据和业务结合起来做成数据产品。
大数据岗位晋升发展规划?
初入职场的 3 年,主要的工作内容就是夯实基础,此时基本处于「完成上级交付的任务」这样的阶段。但在这个过程中,员工不能仅仅完成任务了事,而是要不断思考为什么上级要布置这个任务,这个需求是怎么来的,用于解决什么问题,有没有更好的解决方案等等。
之后的 3 年,也就是职业生涯的 3-5 年,作为大数据工程师,需要达到一个小 leader 的层级,即带领一个小团队(可以仅仅有几个人)负责某一个某块或是功能的研发,此时在上个阶段积累的经验和关于解决方案的各种想法的作用便凸显出来。而此时作为小团队负责人的角色,程序员更多地需要关注上下游的逻辑,能够形成完整的逻辑链条。
工作经验的 5-8 年,此时大数据工程师已经进阶成了大数据技术负责人,可以独立负责某一个产品的研发,可以成功地推动产品从 0-1 的阶段,此时更多需要关注的便是跨部门之间的合作与沟通,确保研发行程的按时交付。与此同时,更多地关注一些产品设计方面的内容,会对进一步的晋升很有帮助。
末后一个阶段,即工作 10 年以上,此时达到研发总监或是更高的职位会是一个比较理想的状态,而对于这个层次的要求,是对于整个行业能有比较清晰深入的判断,能够感知未来技术发展的方向并为公司提前布局。
所以,大数据工程师干不过35岁,只是谣言!大数据职业发展前景是很好的,但是任何行业都不存在铁饭碗,大家应该早点规划好自己的职业发展路线,不断学习进步,这样才是正确的职业价值观!
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
大数据优化在SEO公司中的应用
大数据优化在SEO公司中的应用,搜索引擎优化可以通过浏览企业网站了解搜索引擎优化以及其业务需求。搜索引擎优化公司可能会更好地了解市场,并了解需要采取哪些措施以获得曝光率。企业可以保持领先于竞争对手的唯一方法是了解其目标市场以及他们的沟通方式。
8090
2019-05-13 12:06:20
大数据HIve数据仓库应用案例讲解分析
如今,大数据的大浪已经把我们每个人都卷入其中,随着大数据技术一起引起大众注意的还有HIve数据仓库。作为大数据分析的核心工具之一,它一直发挥着为企业提供决策支持的重要作用。因此掌握Hive是入门大数据学习的关键之一,下面我们就一起来看看HIve数据仓库应用案例讲解。
8062
2019-09-20 16:55:35
大数据开发工程师需要学习哪些知识点?
大数据开发工程师需要学习哪些知识点?大数据程序员需要有坚实的大数据技术理论基础、了解数据平台、掌握数据存储 HDFS、、日志解析及计算 MR、数据获取和预处理 Flume、结构化查询 Hive、数据获取和预处理 Sqoop、大数据调度框架Azkaban、Scala编程基础等相关知识。
7107
2020-09-03 14:13:34
推荐零基础学习大数据的10本经典图书
学习大数据并不是一蹴而就的事情,及时工作多年的开发工程师都需要不断的补充新鲜的知识内容。目前学习大数据知识可以通过视频和图书两种方式学习,视频的优势在于能够将老师的个人开发经验传授给学习者,而图书的优势在于能够随时翻阅,内容比较丰富。这里为大家推荐零基础学习大数据的8本经典图书,希望同学们能够通过不同的学习途径充分掌握大数据开发技能。
5534
2020-09-14 16:01:31
大数据学习之Kafka相关的基本原理学习
大数据学习之Kafka相关的基本原理学习,小编整理了Kafka 一些重要概念,让大家对 Kafka 有个系统的认知知,并详细的解析其中每个概念的作用以及更深入的原理
3672
2022-03-22 11:33:03
