在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
大数据工程师干不过35吗?事实上,大数据工程师现在十分吃香,而且工作经验越高越抢手,不存在“干不过35岁”的说法。如果大家真的掌握了大数据技术,其职业发展前景是完全不用担心的。
大数据为什么这么火?
与以往相比,我们除了有能力存储更多的数据量之外,还要面对更多的数据类型。这些数据的来源包括网上交易、网络社交活动、自动传感器、移动设备以及科学仪器等等。除了那些固定的数据生产源,各种交易行为还可能加快数据的积累速度。比如说,社交类多媒体数据的爆炸性增长就源于新的网上交易和记录行为。数据永远都在增长之中,但是,只有存储海量数据的能力是不够的,因为这并不能保证我们能够成功地从中搜寻出商业价值。
大数据有哪些岗位?
目前,大数据技术的应用在各行各业都取得了成绩不菲的的表现。无论是当下发展得如火如荼的电商行业,还是在一些传统行业,大数据技术都得到了广泛的应用,因此就业前景十分广阔。大数据的就岗位大致可以划分为技术和管理两个方向,具体岗位分工如下:
大数据开发工程师:负责公司大数据平台的开发和维护,负责大数据平台持续集成相关工具平台的架构设计与产品开发等。
数据分析师:进行数据搜集、整理、分析,针对数据分析结论给管理销售运营提供指导意义的分析意见。
数据挖掘工程师:商业智能,用户体验分析,预测流失用户等;需要过硬的数学和统计学功底以外,对算法的代码实现也有很高的要求。
数据库开发:设计,开发和实施基于客户需求的数据库系统,通过理想接口连接数据库和数据库工具,优化数据库系统的性能效率等。
数据管理:数据库设计、数据迁移、数据库性能管理、数据安全管理,故障检修问题、数据备份、数据恢复等。
数据科学家:清洗,管理和组织(大)数据,利用算法和模型提高数据处理效率、挖掘数据价值、实现从数据到知识的转换。
数据产品经理:把数据和业务结合起来做成数据产品。
大数据岗位晋升发展规划?
初入职场的 3 年,主要的工作内容就是夯实基础,此时基本处于「完成上级交付的任务」这样的阶段。但在这个过程中,员工不能仅仅完成任务了事,而是要不断思考为什么上级要布置这个任务,这个需求是怎么来的,用于解决什么问题,有没有更好的解决方案等等。
之后的 3 年,也就是职业生涯的 3-5 年,作为大数据工程师,需要达到一个小 leader 的层级,即带领一个小团队(可以仅仅有几个人)负责某一个某块或是功能的研发,此时在上个阶段积累的经验和关于解决方案的各种想法的作用便凸显出来。而此时作为小团队负责人的角色,程序员更多地需要关注上下游的逻辑,能够形成完整的逻辑链条。
工作经验的 5-8 年,此时大数据工程师已经进阶成了大数据技术负责人,可以独立负责某一个产品的研发,可以成功地推动产品从 0-1 的阶段,此时更多需要关注的便是跨部门之间的合作与沟通,确保研发行程的按时交付。与此同时,更多地关注一些产品设计方面的内容,会对进一步的晋升很有帮助。
末后一个阶段,即工作 10 年以上,此时达到研发总监或是更高的职位会是一个比较理想的状态,而对于这个层次的要求,是对于整个行业能有比较清晰深入的判断,能够感知未来技术发展的方向并为公司提前布局。
所以,大数据工程师干不过35岁,只是谣言!大数据职业发展前景是很好的,但是任何行业都不存在铁饭碗,大家应该早点规划好自己的职业发展路线,不断学习进步,这样才是正确的职业价值观!
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
大数据岗位介绍和职业规划分析
我们经常在谈论的大数据行业究竟是做什么的?相信这个问题绝大多数人都说不清楚。因为大数据行业是一个很广泛的概念,想要从事大数据行业的朋友可以有很多职业方向的选择。下面我将把大数据行业大致划分为五个方向的就业岗位,它们分别是数据管理专员、数据工程师、商业分析师、机器学习研究员/从业者和数据导向专业人员。然后一一为大家进行岗位介绍和职业规划的分析,感兴趣就接着看下去吧!
9690
2020-01-07 17:43:07
大数据开发工程师是做什么的?岗位要求高吗?
大数据开发工程师要负责数据仓库建设、ETL开发、数据分析、数据指标统计、大数据实时计算平台及业务开发、平台建设及维护等工作内容。熟练掌握数据仓库、hadoop生态体系、计算及二次开发、大数据平台工具的开发:开发平台、调度系统、元数据平台等工具,该岗位对于技术要求较高。
8946
2020-09-03 11:23:41
学大数据技术与应用的女生多吗?适合吗?
随着人工智能的发展,对于大数据方面的人才需要越来越大,高校里面选择大数据技术的人不在少数,女生适不适合学大数据技术与应用这个问题跟女生适不适合学IT技术一样,没有性别限制,女生更适合数据分析方便的工作。
9160
2020-09-23 10:31:38
Hadoop HDFS分布式文件系统原理及应用介绍
HDFS有着高容错性特点,且设计用来部署在低廉的硬件上,提供高吞吐量来访问应用程序的数据,适合那些有着超大数据集的应用程序。HDFS放宽了POSIX的要求,可以实现流的形式访问文件系统中的数据。
4109
2021-04-13 16:30:33
缓存是什么?为什么要使用缓存?
缓存是什么?为什么要使用缓存?缓存是将一些需要读取数据放在磁盘或者内存中,在读取数据的时候,一般是从关系型数据库中读取数据,缓存时能够最快提高服务响应速度的优化。
6235
2022-04-07 15:07:05