在线客服
扫描二维码
下载博学谷APP
扫描二维码
关注博学谷微信公众号
大数据时代如何做好数据分析是每个企业都在关注的问题,而数据可视化无疑是未来的发展趋势之一。相信大家对数据可视化并不陌生,但是大家真的了解什么是数据可视化吗?本文就用三分钟简单解读一下数据可视化的概念、发展、优势和工具,带大家快速了解和认识数据可视化。

1、数据可视化的概念
数据可视化,就是将相对抽象的的数据通过可视的、交互的方式进行展示,从而形象而又直观地表达出数据蕴含的信息和规律。简单来说,就是把复杂无序的数据用直观的图像展示出来,这样可以一下就能清晰的发现数据中潜藏的规律。当然啦,数据可视化,不仅仅是统计图表。本质上,任何能够借助于图形的方式展示事物原理、规律、逻辑的方法都叫数据可视化。
2、数据可视化的发展
想要完全解读数据可视化,我们必须追溯它的起源。早期的数据可视化作为咨询机构、金融企业的专业工具,其应用领域较为单一,应用形态较为保守。步入大数据时代,各行各业对数据的重视程度与日俱增,随之而来的是对数据进行一站式整合、挖掘、分析、可视化的需求日益迫切,数据可视化呈现出愈加旺盛的生命力,表现之一就是视觉元素越来越多样,从朴素的柱状图/饼状图/折线图,扩展到地图、气泡图、树图、仪表盘等各式图形。表现之二是可用的开发工具越来越丰富,从专业的数据库/财务软件,扩展到基于各类编程语言的可视化库,相应的应用门槛也越来越低。
3、数据可视化的优势
一方面,数据赋予可视化以价值;另一方面,可视化增加数据的灵性,两者相辅相成,帮助企业从信息中提取知识、从知识中收获价值。使用数据可视化的优势是显而易见的,它的传递速度快,数据显示具有多维性,可以更直观的展示信息。而且由于大脑记忆能力的限制,我们对数据的记忆很难维持,但是数据可视化把抽象的数据给图形化,就能更加深我们的理解和记忆。
4、数据可视化的流程
数据可视化不仅是一门包含各种算法的技术, 还是一个具有方法论的学科。一般而言,完整的可视化流程包括以下内容:
可视化输入:包括可视化任务的描述,数据的来源与用途,数据的基本属性、概念模型等;可视化处理:对输入的数据进行各种算法加工,包括数据清洗、筛选、降维、聚类等操作,并将数据与视觉编码进行映射;可视化输出:基于视觉原理和任务特性,选择合理的生成工具和方法,生成可视化作品。
实际上,从“数据可视化”的命名,便很容易看出数据可视化从业者如何开始可视化设计,那便是:处理数据,设计视觉,完成从数据空间到可视空间的映射, 必要时重复数据处理和图形绘制的循环组合。
5、数据可视化工具
(1)对于Microsoft Excel这个软件大家应该并不陌生,对于一般的可视化这个软件完全足矣,但是对于一些数据量较大的数据则不太适合。
(2)Google SpreadsheetsGoogle Spreadsheets是基于Web的应用程序,它允许使用者创建、更新和修改表格并在线实时分享数据。基于Ajax的程序和微软的Excel和CSV(逗号分隔值)文件是兼容的。表格也可以以超文本链接标记语言(HTML)的格式保存。
(3)Tableau SoftwareTableau Software现在比较受大家的欢迎,既可以超越Excel做一些稍微复杂的数据分析,又不用像R、Python那种编程语言进行可视化那么复杂。好多人都有推荐这款软件。
想必三分钟快速解读数据可视化,只能让大家有一个初步的了解。我们现在所处的这个时代,是一个大数据快速发展的时代。想要深入学习数据可视化,要记住其工具只是辅助,只有对数据可视化理念的准确把握才是根本。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
常见的数据建模工具有哪些?
常见的数据建模工具有哪些?企业选择数据建模工具时,需要找到现在和将来最有可能使用的功能。企业并不需要拥有所有功能的工具,但可以尝试采用一些不同的平台找出可以满足其需求并提高生产率的工具。可以集成来自不同系统的数据,使用免费的数据建模工具来组织大数据,以便更轻松地访问信息。通过寻找复杂概念的图形表示来了解企业的业务。
11212
2020-03-23 17:05:45
大数据分析软件有哪些?
大数据分析软件有哪些?谈到大数据当然少不了分析软件,这应该是大数据工作的根基,但是市场上有很多各种各样的分析软件,如果没有过人的经验,真的很难找到适合自己或者适合企业的。
5656
2020-07-02 15:33:36
Pandas如何分块处理大文件?
在处理快手的用户数据时,碰到600M的txt文本,用sublime打开蹦了,用pandas.read_table()去读竟然花了小2分钟,打开有3千万行数据。仅仅是打开,要处理的话不知得多费劲。解决方法:读取文件的函数有两个参数:chunksize、iterator。原理分多次不一次性把文件数据读入内存中。
6278
2020-08-14 16:16:47
大数据开发和大数据分析该怎么选择?
大数据开发主要是负责大数据挖掘,大数据清洗处理,大数据建模等,负责大规模数据的处理和应用,工作以开发为主与大数据可视化分析工程师相互配合,从数据中挖掘出价值为企业业务发展提供支持。
4593
2021-01-15 10:09:54
入行大数据学习路线分享 学习不迷路
入行大数据学习路线分享 学习不迷路,想要从事大数据技术开发工作请问要怎么做,学习路线是什么?从哪里开始学?学哪些?对于想学大数据的人群有诸多的疑问,大数据本质上是海量数据。以往的数据开发,需要一定的Java基础和工作经验,门槛高入门难。如果零基础入门数据开发行业的小伙伴可以从Python语言入手。
3327
2022-02-18 11:06:17
