在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
Kafka的优势有哪些?经常应用在哪些场景?Kafka的优势比较多如多生产者无缝地支持多个生产者、多消费者、基于磁盘的数据存储、具有伸缩性、高性能轻松处理巨大的消息流。多用于开发消息系统,网站活动追踪、日志聚合、流处理等方面。今天我们一起来学习Kafka的相关知识吧!
一、Kafka的优势有哪些?
1. 多生产者
可以无缝地支持多个生产者,不论客户端在使用单个主题还是多个主题。
2. 多消费者
支持多个消费者从一个单独的消息流上读取数据,且消费者之间互不影响。
3. 基于磁盘的数据存储
支持消费者非实时地读取消息,由于消息被提交到磁盘,根据设置的规则进行保存。当消费者发生异常时候意外离线,由于有持久化的数据保证可以实现联机后从上次中断的地方继续处理消息。
4. 伸缩性
用户在开发阶段可以先试用单个broker,再扩展到包含3个broker的小型开发集群,然后随着数据量不断增长,部署到生产环境的集群可能包含上百个broker。
5. 高性能
Kafka可以轻松处理巨大的消息流,在处理大量数据的同时还能保证亚秒级的消息延迟。
二、Kafka使用场景有哪些?
1. 消息
kafka更好的替换传统的消息系统,消息系统被用于各种场景,与大多数消息系统比较kafka有更好的吞吐量内置分区,副本和故障转移,这有利于处理大规模的消息。
根据我们的经验消息往往用于较低的吞吐量,但需要低的端到端延迟并需要提供强大的耐用性的保证。在这一领域的kafka比得上传统的消息系统,如ActiveMQ或RabbitMQ等。
2. 网站活动追踪
kafka原本的使用场景是用户的活动追踪,网站的活动(网页游览,搜索或其他用户的操作信息)发布到不同的话题中心,这些消息可实时处理实时监测也可加载到Hadoop或离线处理数据仓库。
3. 指标
kafka也常常用于监测数据,分布式应用程序生成的统计数据集中聚合。
4. 日志聚合
许多人使用Kafka作为日志聚合解决方案的替代品。日志聚合通常从服务器中收集物理日志文件,并将它们放在中央位置(可能是文件服务器或HDFS)进行处理。Kafka抽象出文件的细节,并将日志或事件数据更清晰地抽象为消息流。这允许更低延迟的处理并更容易支持多个数据源和分布式数据消费。
5. 流处理
kafka中消息处理一般包含多个阶段。其中原始输入数据是从kafka主题消费的,然后汇总,丰富,或者以其他的方式处理转化为新主题,例如,一个推荐新闻文章,文章内容可能从“articles”主题获取;然后进一步处理内容,得到一个处理后的新内容,最后推荐给用户。这种处理是基于单个主题的实时数据流。从0.10.0.0开始,轻量,但功能强大的流处理,就可以这样进行数据处理了。
除了Kafka Streams还有ApacheStorm和Apache Samza可选择。
6. 事件采集
事件采集是一种应用程序的设计风格,其中状态的变化根据时间的顺序记录下来,kafka支持这种非常大的存储日志数据的场景。
7. 提交日志
kafka可以作为一种分布式的外部日志,可帮助节点之间复制数据,并作为失败的节点来恢复数据重新同步,kafka的日志压缩功能很好的支持这种用法,这种用法类似于Apacha BookKeeper项目。
Kafka是大数据开发过程中必备的知识点之一,想要系统的了解大数据知识图谱可以联系老师领取学习路线哦!
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
实现大数据可视化的十个出发点
实现大数据可视化的十个出发点,需要考虑用户、讲述连贯的故事、迭代设计、个性化一切、从分析目标开始、考虑管理、对观看者的同理心、了解业务、连接可视化、尽可能简化,以便解决手头的假设问题。
11031
2019-04-24 19:16:12
大数据培训 零基础大数据培训课程学什么
博学谷的零基础大数据培训课程内容:Java基础、JavaWeb、主流框架、流行框架、大数据基础增强、大数据Hadoop离线分布式系统、就业课、网站点击流项目、大数据Storm实时计算系统、大数据Spark内存计算系统、大数据Flink实时计算系统、机器学习(拓展课程)等内容。
8055
2019-06-19 17:10:33
大数据Apache Hadoop YARN 工作原理介绍
Apache Hadoop YARN是一种新的 Hadoop 资源管理器,通用资源管理系统可为上层应用提供统一的资源管理和调度,引入为集群在利用率、资源统一管理和数据共享等方面具有很强的优势。
5878
2020-04-27 14:27:28
大数据之Spark框架中RDD和DataFrame的区别
大数据之Spark框架中RDD和DataFrame的区别是什么?RDD(提供了一种高度受限的共享内存模型;DataFrame是一种分布式的数据集,并且以列的方式组合的。在spark中RDD、DataFrame是最常用的数据类型,在使用的过程中你知道两者的区别和各自的优势吗?关于如何具体的应用我们今天就好好的分析一下。
3963
2022-02-18 11:32:22
狂野大数据课程培训哪些内容?提升哪些职业技能?
狂野大数据课程培训内容:学习机器学习基础、SparkML&SparkMllib基础、SparkMl特征⼯程实战V2.1、分类算法实战、聚类算法实战、回归算法实战、SparkMl推荐算法实战、SparkMl⾼阶主题等内容。
3452
2022-09-16 15:31:33