在线客服
扫描二维码
下载博学谷APP
扫描二维码
关注博学谷微信公众号
Kafka的优势有哪些?经常应用在哪些场景?Kafka的优势比较多如多生产者无缝地支持多个生产者、多消费者、基于磁盘的数据存储、具有伸缩性、高性能轻松处理巨大的消息流。多用于开发消息系统,网站活动追踪、日志聚合、流处理等方面。今天我们一起来学习Kafka的相关知识吧!

一、Kafka的优势有哪些?
1. 多生产者
可以无缝地支持多个生产者,不论客户端在使用单个主题还是多个主题。
2. 多消费者
支持多个消费者从一个单独的消息流上读取数据,且消费者之间互不影响。
3. 基于磁盘的数据存储
支持消费者非实时地读取消息,由于消息被提交到磁盘,根据设置的规则进行保存。当消费者发生异常时候意外离线,由于有持久化的数据保证可以实现联机后从上次中断的地方继续处理消息。
4. 伸缩性
用户在开发阶段可以先试用单个broker,再扩展到包含3个broker的小型开发集群,然后随着数据量不断增长,部署到生产环境的集群可能包含上百个broker。
5. 高性能
Kafka可以轻松处理巨大的消息流,在处理大量数据的同时还能保证亚秒级的消息延迟。
二、Kafka使用场景有哪些?
1. 消息
kafka更好的替换传统的消息系统,消息系统被用于各种场景,与大多数消息系统比较kafka有更好的吞吐量内置分区,副本和故障转移,这有利于处理大规模的消息。
根据我们的经验消息往往用于较低的吞吐量,但需要低的端到端延迟并需要提供强大的耐用性的保证。在这一领域的kafka比得上传统的消息系统,如ActiveMQ或RabbitMQ等。
2. 网站活动追踪
kafka原本的使用场景是用户的活动追踪,网站的活动(网页游览,搜索或其他用户的操作信息)发布到不同的话题中心,这些消息可实时处理实时监测也可加载到Hadoop或离线处理数据仓库。
3. 指标
kafka也常常用于监测数据,分布式应用程序生成的统计数据集中聚合。
4. 日志聚合
许多人使用Kafka作为日志聚合解决方案的替代品。日志聚合通常从服务器中收集物理日志文件,并将它们放在中央位置(可能是文件服务器或HDFS)进行处理。Kafka抽象出文件的细节,并将日志或事件数据更清晰地抽象为消息流。这允许更低延迟的处理并更容易支持多个数据源和分布式数据消费。
5. 流处理
kafka中消息处理一般包含多个阶段。其中原始输入数据是从kafka主题消费的,然后汇总,丰富,或者以其他的方式处理转化为新主题,例如,一个推荐新闻文章,文章内容可能从“articles”主题获取;然后进一步处理内容,得到一个处理后的新内容,最后推荐给用户。这种处理是基于单个主题的实时数据流。从0.10.0.0开始,轻量,但功能强大的流处理,就可以这样进行数据处理了。
除了Kafka Streams还有ApacheStorm和Apache Samza可选择。
6. 事件采集
事件采集是一种应用程序的设计风格,其中状态的变化根据时间的顺序记录下来,kafka支持这种非常大的存储日志数据的场景。
7. 提交日志
kafka可以作为一种分布式的外部日志,可帮助节点之间复制数据,并作为失败的节点来恢复数据重新同步,kafka的日志压缩功能很好的支持这种用法,这种用法类似于Apacha BookKeeper项目。
Kafka是大数据开发过程中必备的知识点之一,想要系统的了解大数据知识图谱可以联系老师领取学习路线哦!

— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
了解前沿技术:大数据经典应用案例分享
目前国内大部分代行的企业已经将大数据充分的运用到原来的业务之中,对于哪些目前还在互联网转型甚至没有实现互联网+转型的企业来说,能否尽快布局大数据成为企业实现快速发展的核心问题。因此我们需要跟多的了解大数据到底都可以做什么。本文为大家分享了部分大数据应用成功案例。对于企业或者开发者都可以从中找到与自己实际工作业务相关的拓展思路。
9898
2019-07-22 16:28:07
影响大数据与分析的因素有哪些?
数据分析在数据库内进行索引和分析,并且企业拥有确保数据可以移至正确位置的工具。借助现代商业智能技术使答案更接近于业务用户。寻找、清查和综合分布广泛且多样化的数据资产。算法将有助于分析系统对数据进行指纹识别、发现异常和洞察,并提出应与之一起分析的新数据。
8825
2020-02-14 16:32:23
大数据hadoop入门课程大纲
Hadoop简称HDFS,它具有高容错性的特点,并且适合那些有着超大数据集的应用程序。Hadoop中的分布式计算框架,使的分布式编程更简单,能够很好的处理存储在hdfs上的海量数据。因此如果大家要入门学习大数据,Hadoop是必须掌握的内容。下面我们一起来看看大数据hadoop入门课程大纲:
5046
2020-05-05 16:20:47
零基础小白的大数据入门手册
零基础小白的大数据入门手册,学大数据前,大家可能听过不少说大数据难学、入行做好心理准备的。大家听完也很动摇很犹豫,怀疑自己能不能学好大数据。这其实完全没有必要,觉得一个东西难,百分之八十的原因是你不了解它。对于零基础小白而言想学大数据,首先了解下大致学习路径有个框架,知道学习的方向。
4823
2020-06-15 17:33:18
缓存如何分类?有什么区别?
缓存分类按照系统划分为应用级缓存和系统级别缓存;按照设计分本地缓存、分布式缓存、多级缓存。在技术界“缓存为王”,从浏览器到应用前端、应用后端、数据库,每一层都能通过缓存来提高系统的扩展能力,改善系统的响应能力同时减少系统的负担。
6243
2022-04-07 15:59:17
