在线客服
扫描二维码
下载博学谷APP
扫描二维码
关注博学谷微信公众号
大数据开发工程师招聘要求高吗?大数据开发工程师该岗位对于技术要求较高,有一定的技术门槛。大数据工程师不少细分方向,不同的方向需要具备不同的知识结构,分别是大数据底层平台研发、大数据应用开发、大数据分析和大数据运维。

大数据开发工程师负责数据仓库建设、ETL开发、数据分析、数据指标统计、大数据实时计算平台及业务开发、平台建设及维护等内容。必须数据仓库、hadoop生态体系、计算及二次开发、大数据平台工具的开发:开发平台、调度系统、元数据平台等工具。
大数据开发工程师招聘要求较高,接下来下边分享下一些企业对于该岗位的要求:
A公司大数据开发工程师招聘要求:
工作职责:
1、基于海量数据,支持业务对数据的分析和使用;
2、支持业务处理数据的流式处理、分析客户行为等。
任职要求:
1、精通至少一门编程语言,熟练运用各种常用算法和数据结构,有独立的实现能力 ;
2、熟悉常用的开源组件:Hadoop/Hive/Spark/Storm,并了解其特性和使用场景优先;
3、熟悉机器学习、数据挖掘、数据分析、分布式计算至少某一方面,有较深的理论研究和实践经验优先;
4、数据分析、推荐、机器学习、数据挖掘相关的开发工作优先。
B公司大数据开发工程师招聘要求:
职责描述:
1.负责大数据接入、存储、分析、监控等系统的开发工作。
2.负责业务数据的采集、存储、清洗、分析和数据逻辑接口开发。
3.负责Hive、Spark、HBase、Kafka等组件的性能优化工作。
4.大规模数据分析、数据挖掘和机器学习算法的实现。
任职要求:
1、本科以上学历,计算机、数学相关专业,1年以上基于大数据开发经验;
2、理解分布式系统概念、思想,扎实的编程基础,熟悉Hadoop(HDFS/MapReduce/Hive/HBase)、Spark、Kafka、Flume、Dubbo等类框架两种以上,至少有1个以上成熟项目经验;
3、熟悉Java、python至少一种开发语言,熟悉SQL开发和调优,熟悉Linux操作系统;
4、能独立开展离线数据分析、流数据计算、海量数据实时查询等相关应用的开发工作;
5、能独立分析和解决问题,有较强的书面与口头沟通表达能力;
6、工作踏实,良好的团队工作和协作能力;
大数据工程师的工作内容简单通俗的来说就是分析历史、预测未来、优化选择。要具备大数据基础知识、大数据平台知识和大数据场景知识三方面的知识结构。大数据基础知识:数学基础、统计学基础和计算机基础。具备数学基础、统计学基础知及计算机基础。能够搭建与优化大数据基础平台、大数据能力开放平台、大数据交易平台;基于大数据平台的数据仓库工具Hive/Spark/HBase, ETL调度工具,数据同步工具的开发、使用、集成和自动化运维,以及多租户与权限控制策略的实现;研发基于大数据平台的数据仓库平台产品。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
大数据是什么?与数据之间有什么区别?
大数据是什么?从字面的理解我可以认为他是大量的数据,而在计算机网络领域则将大数据定义为需要更新处理模式才能具有更强的决策力,洞察发现力和流程优化能力来适应海量,高增长了和多样化的薪资资产。因此大数据不仅仅是在数据量的变化,好包括其增长速度以及多样化的特性。
15116
2019-06-06 15:48:59
大数据技术自学能学会吗?大数据应该如何自学?
大数据本质也是数据,但是又有了新的特征,包括数据来源广、数据格式多样化(结构化数据、非结构化数据、Excel文件、文本文件等)、数据量大(最少也是TB级别的、甚至可能是PB级别)、数据增长速度快等。那大数据技术自学能学会吗?大数据应该如何自学呢?
7760
2019-08-14 10:21:23
如何解决HBase海量数据高效入仓的问题?
如何解决HBase海量数据高效入仓的问题?数据仓库的数据来源于各方业务系统,高效准确的将业务系统的数据同步到数仓是数仓建设的根本。部分业务数据存储在HBase中,这部分数据体量较大达到数十亿。大数据需要增量同步这部分业务数据到数据仓库中进行离线分析,目前主要的同步方式是通过HBase的hive映射表来实现的。
4247
2022-03-10 13:46:02
缓存是什么?为什么要使用缓存?
缓存是什么?为什么要使用缓存?缓存是将一些需要读取数据放在磁盘或者内存中,在读取数据的时候,一般是从关系型数据库中读取数据,缓存时能够最快提高服务响应速度的优化。
7723
2022-04-07 15:07:05
大数据的属性是什么?如何划分?
大数据的属性是什么?如何划分?拥有大数据是件令人兴奋的事,但在实践中处理大数据存在一定的困难,如数据量过大事情就会变得更困难。为了处理大数据要采用高性能算法,这些算法也已展现出惊人的优越性。
5731
2022-05-04 15:28:28
