在线客服
扫描二维码
下载博学谷APP
扫描二维码
关注博学谷微信公众号
如何解决HBase海量数据高效入仓的问题?数据仓库的数据来源于各方业务系统,高效准确的将业务系统的数据同步到数仓是数仓建设的根本。部分业务数据存储在HBase中,这部分数据体量较大达到数十亿。大数据需要增量同步这部分业务数据到数据仓库中进行离线分析,目前主要的同步方式是通过HBase的hive映射表来实现的。

这种方式目前存在的缺陷:需要对HBase表进行全表扫描对HBase库有一定压力同步数据同步速度慢;业务方对HBase表字段变更之后需要重建hive映射表给权限维护带来一定的困难;业务方对HBase表字段的变更无法得到有效监控无法及时感知字段的新增,对数仓的维护带来一定的困难;业务方更新数据时未更新时间戳导致通过时间戳字段增量抽取时数据缺失;业务方对表字段的更新新增无法及时感知导致字段不全需要回溯数据。
基于以上背景对HBase数据增量同步到数仓的场景给出了通用的解决方案,解决了以上这些痛点。
二、解决HBase海量数据高效入仓的方案简述
1、数据入仓构建流程
2、HBase数据入仓方案实验对比
分别对以上三种实现方案进行合理性分析:
方案一:
使用HBase的hive映射表。
此种方案实现方式简单,但是不符合数仓的实现机制,主要原因有:HBase表虽然是Hadoop生态体系的NoSQL数据库,但是其作为业务方的数据库,直接通过hive映射表读取,就类比于直接读取业务方Mysql中的视图,可能会对业务方数据库造成一定压力,甚至会影响业务的正常运行,违反数仓尽可能低的影响业务运行原则。
通过hive映射表的方式从实现方式上来讲,增加了与业务方的耦合度,违反数仓建设解耦原则。所以此种方案在此实际应用场景中是不应该采取的方案。
方案二:
根据业务表中的时间戳字段,抓取增量数据。
由于HBase是基于rowKey的NoSQL数据库,所以会存在以下几个问题:需要通过Scan全表,然后根据时间戳(updateTime)过滤出当天的增量,当数据量达到千万甚至亿级时,这种执行效率就很低,运行时长很长。由于HBase表更新数据时,不像MySQL一样,能自动更新时间戳,会导致业务方没有及时更新时间戳,那么在增量抽取数据的时候,会造成数据缺失的情况。所以此种方案存在一定的风险。
方案三:
根据HBase的timeRange特性(HBase写入数据的时候会记录时间戳,使用的是服务器时间),首先过滤出增量的rowKey,然后根据这些rowKey去HBase查询对应的数据。这种实现方案同时解决了方案一、方案二的问题。同时,能够有效监控业务方对HBase表字段的新增情况,避免业务方未及时通知而导致的数据缺失问题,能够最大限度的减少数据回溯的频率。
综上采用方案三作为实现HBase海量数据入仓的解决方案。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
大数据Hadoop中HDFS 存储的机制?
HDFS即Hadoop分布式文件系统。它是一个高度容错性的系统,适合部署在廉价的机器上。HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。那大数据中HDFS 存储的机制怎样的呢?
13187
2019-08-14 10:19:54
大数据Hbase经典面试题汇总
本文是根据市场需求和许多程序员面试的反馈而整理出来的,里面汇总了近些年来有关Hbase知识点的大数据经典面试题。希望本文能帮助求职者梳理Hbase知识点,让求职者在面试过程中胸有成竹。
9909
2019-08-05 19:10:38
数据分析师好找工作吗?薪资待遇怎么样?
数据分析师好找工作吗?回答无疑是肯定的。数据分析师一职在当下所谓的就业寒潮中,可以说是一路激流勇进。那么数据分析师的薪资待遇究竟怎么样呢?根据各大招聘网站整理的数据,我们可以看见,各知名互联网大厂都几乎开出了30K-70K的年薪,来吸引数据分析人才,但是岗位却仍然供不应求。
8886
2019-12-24 14:32:35
大数据学习的基础知识
大数据学习的基础知识,随着互联网科技的发展,新型技术行业如人工智能等高科技领域人才需求不断扩大。其中大数据行业的发展前景也是相当好。导致很多人跟风报名,结果就是好多人哭喊大数据好难学。但是,大数据真的这么难吗?大数据基础学习内容是什么?大家不妨先了解一下再决定要不要继续学习。
4654
2020-06-12 15:58:59
大数据学习之Kafka相关的基本原理学习
大数据学习之Kafka相关的基本原理学习,小编整理了Kafka 一些重要概念,让大家对 Kafka 有个系统的认知知,并详细的解析其中每个概念的作用以及更深入的原理
3770
2022-03-22 11:33:03
