在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
随着互联网技术的不断提升,数据已经成为各大企业新的战场,而对于从业者来说,如果你对数据科学领域的工作感兴趣的话,肯定首先要了解一下数据科学领域都有哪些岗位。从岗位性质和主要工作内容不同我们可以把数据科学的岗位大概分为四类:数据产品经理、大数据工程师、数据挖掘师、数据分析师。数据产品经理显而易见就是精通并擅长数据产品设计的PM。这里我们具体了解一下大数据工程师、数据挖掘师和数据分析师有什么区别。
首先这三个技术方向都是与数据打交道,但是根据他们的主要工作内容、入门门槛、职业前景等方面进行对比,三个岗位有非常大的差异化。
工作内容区别:
大数据工程师:大数据工程师是利用大户数技术处理大量数据的专业技术人员。其工作重点在于通过开发技术实现数据仓库管理、数据的实时计算等,可以定位为数据仓库的管理员。
数据挖掘师:主要指从大量的数据中通过算法搜索隐藏域其中知识的工程技术人员。其工作重点在与通过将算法运用到开发技术中,从而挖掘数据中的价值,其核心在于算法的运营,具体岗位有算法工程师、机器学习工程师等。
数据分析师:专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。数据分析师更注重业务层的分析能力,而不需要过多的掌握数据仓储以及获取,有人认为数据分析师相对来说层次较低,可能是没有看到在大数据领域的数据分析师的强悍吧。
入门门槛区别
大数据工程师:大数据工程师可以说是没有学历的入门门槛,主要是应用层面的开发能力,只要能掌握大数据开发技术,并且能够顺利并且出色的完成相关的开发任务就可以达到企业用人标准。但是大数据技术学习的过程还是会形成一个分水岭,因为大数据开发技术内容相对较多,甚至如果从Java基础开始学习,所需要学习的内容体系非常庞大,完全掌握大数据开发技术也并非易事。
数据挖掘师:数据挖掘工程师在算法层面对从业人员是一个天然的屏障。应该说是在数据科学领域中数据挖掘是入门要求最高的。一般要求从业者具备数据、算法等核心技能,而这些知识的学习一般都在要求在理工科专业本科及以上层次的人才才能接触到的。
数据分析师:初级的数据分析师(一般指中小企业少量数据的分析)基本是没有入门门槛的,只要掌握了相应的工具应用即可从事该工作,而在大数据分析领域,同样需要大量的统计学以及算法知识做为支撑,但是相对另外两个岗位而言,在开发技术方向的要求并不高。因此相对来说更好入门一些。
职业前景
大数据工程师:大数据开发工程师以技术为核心,其职业发展方向包括高级开发、大数据开发架构,或者通过系统学习成为大数据分析师。然而有算法作为天然屏障,大数据工程师很难成为数据挖掘工程师,甚至数据科学家。
数据挖掘师:数据挖掘工程师是最接近数据科学家的数据岗位方向,在职业发展前景方面,主要还是围绕算法进一步发展成为算法研究员、高级算法工程师、数据科学家等。
数据分析师:数据分析师作为业务层面的高级人才,其职业发展路线同样与业务直接相关,如业务专家、企业管理、策略专家、高级分析师等等。
想学习数据科学的你是否对这三个方向了解了呢?目前最适合大家学习的领域就是大数据开发工程师方向,对你自身的学历和知识储备没有太苛刻的要求,只要你肯下功夫学习,还是可以进入大数据开发工程师岗位的大门,而如果你具备较高层次的数学和算法基础,可以考虑数据挖掘工程师和数据分析师岗位。当然这里有必要提一下,对于初级数据分析师岗位未来可能会成为每个岗位的基本技能要求,单纯的学习初级数据分析师的技能可能在未来的职业发展中会遇到瓶颈。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
你那么努力为什么还又穷又忙?数据分析直播课预告
如果说:“有什么事比穷更可怕?”那一定是“又穷又忙!”加班熬夜写方案,优化产品,留存率却不见提升;公众号文章不断优化,新增用户也是寥寥无几;社群不停维护,优惠不断增加,用户依然不买账;……
5875
2019-08-21 15:55:07
大数据工作好找吗?就业困不困难?
大数据工作好找吗?就业困不困难?目前是大数据行业快速发展的时期,我们的生活和工作处处都离不开大数据。在大数据如此迅猛发展的形势下,担心大数据的就业问题完全是杞人忧天。如果学大数据的小伙伴们,真的感觉工作不好找,那应该好好反思一下自己的能力欠缺在哪里。毕竟不论是从大数据的人才缺口,还是就业范围以及就业岗位的选择来看,大数据的就业都不会困难。
6837
2019-10-30 10:02:01
大学生人工智能与数据科学职业规划如何制定?
大学生人工智能与数据科学职业规划制定数据科学家和人工智能职位人才匮乏,人才需求在未来一年将继续快速增长。应聘者考虑一下自己的水平,具有哪些知识和技能,并思考企业到底需要什么样的人才。
6542
2020-04-08 15:06:50
如何利用大数据构建用户画像?
大数据时代,不仅普通用户可以享受到技术带来的便利,企业也可以从数据中提取有商业价值的信息,构建出用户画像,从而对用户行为进行分析和预测。虽然用户画像不是什么新鲜的概念,但是大数据技术的出现使得用户画像更加清晰客观。下面我们一起来看看如何利用大数据构建用户画像。
5752
2020-07-23 12:12:02
Pandas如何分块处理大文件?
在处理快手的用户数据时,碰到600M的txt文本,用sublime打开蹦了,用pandas.read_table()去读竟然花了小2分钟,打开有3千万行数据。仅仅是打开,要处理的话不知得多费劲。解决方法:读取文件的函数有两个参数:chunksize、iterator。原理分多次不一次性把文件数据读入内存中。
6011
2020-08-14 16:16:47