在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
HDFS全称就是Hadoop分布式文件系统,作为Hadoop的核心组件,它提供了最底层的分布式存储服务。本文整理了HDFS设计目标和HDFS的重要特性等等内容,下面一起来看HDFS入门基础学习总结吧~
1、HDFS设计目标
(1)硬件故障是常态,HDFS将有成百上千的服务器组成,每一个组成部分都有可能出现故障。因此故障的检测和自动快速恢复是HDFS的核心架构目标。
(2)HDFS上的应用与一般的应用不同,它们主要是以流式读取数据。HDFS被设计成适合批量处理,而不是用户交互式的。相较于数据访问的反应时间,更注重数据访问的高吞吐量。
(3)典型的HDFS文件大小是GB到TB的级别。所以,HDFS被调整成支持大文件。它应该提供很高的聚合数据带宽,一个集群中支持数百个节点,一个集群中还应该支持千万级别的文件。
(4)大部分HDFS应用对文件要求的是write-one-read-many访问模型。一个文件一旦创建、写入、关闭之后就不需要修改了。这一假设简化了数据一致性问题,使高吞吐量的数据访问成为可能。
(5)移动计算的代价比之移动数据的代价低。一个应用请求的计算,离它操作的数据越近就越高效,这在数据达到海量级别的时候更是如此。将计算移动到数据附近,比之将数据移动到应用所在显然更好。
(6)在异构的硬件和软件平台上的可移植性。这将推动需要大数据集的应用更广泛地采用HDFS作为平台。
2、HDFS的重要特性
HDFS入门基础学习绕不开的一个知识点就是HDFS的重要特性。首先,HDFS是一个文件系统,用于存储文件,通过统一的命名空间目录树来定位文件;其次,HDFS是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。
(1)master/slave架构
HDFS采用master/slave架构。一般一个HDFS集群是有一个Namenode和一定数目的Datanode组成。Namenode是HDFS集群主节点,Datanode是HDFS集群从节点,两种角色各司其职,共同协调完成分布式的文件存储服务。
(2)分块存储
HDFS 中的文件在物理上是分块存储(block)的,块的大小可以通过配置参数来规定,默认大小在 hadoop2.x 版本中是 128M。
(3)名字空间
HDFS支持传统的层次型文件组织结构。用户或者应用程序可以创建目录, 然后将文件保存在这些目录里。文件系统名字空间的层次结构和大多数现有的文件系统类似:用户可以创建、删除、移动或重命名文件。Namenode 负责维护文件系统的名字空间,任何对文件系统名字空间或属性的修改都将被 Namenode 记录下来。
(4)Namenode元数据管理
我们把目录结构及文件分块位置信息叫做元数据。Namenode负责维护整个hdfs 文件系统的目录树结构,以及每一个文件所对应的block块信息(block的id,及所在的datanode服务器)。
(5)Datanode数据存储
文件的各个block的具体存储管理由datanode节点承担。每一个block都可以在多个 datanode 上。
(6)副本机制
为了容错,文件的所有block都会有副本。每个文件的block大小和副本系数都是可配置的。应用程序可以指定某个文件的副本数目。副本系数可以在文件创建的时候指定,也可以在之后改变。
(7)一次写入,多次读出
HDFS是设计成适应一次写入,多次读出的场景,且不支持文件的修改。正因为如此,HDFS 适合用来做大数据分析的底层存储服务,并不适合用来做网盘等应用,因为修改不方便,延迟大,网络开销大,成本太高。
以上就是HDFS入门基础学习总结,大家都掌握了其中的精华内容了吗?关于HDFS更深入的进阶学习内容,博学谷资讯大数据栏目将在今后更新,敬请期待吧~
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
为什么学习大数据?学习大数据的5个理由!
大数据到底有什么优势?为什么要学习大数据呢?这几年大数据可谓是如日中天,非常多的朋友转行进入大数据行业。甚至目前非常火爆的人工智能也是基于大数据实现的。因此大数据的未来前景非常好。不仅如此,下面小编为大家整理了5点关于学习大数据的理由。
16294
2019-06-03 17:04:06
大数据可视化相关工具介绍
大数据的实际应用中,有一个重要的环节,就是实现数据的可视化。这是数据分析结论导向的重要体现。你可以通过可视化的数据形式明晰的了解各种数据的分布以及占比,例如大数据招聘市场的分布、目前行业岗位薪资与学历的关系、大数据热门技术的应用比例等等。本文就和大家介绍一些大数据可视化的使用工具
8143
2019-08-09 18:04:01
分布式系统学习笔记
分布式系统其实就是为了处理更多数据而存在的。对于大数据学习者来讲,分布式系统入门还是很容易的。本文为大家总结整理了一篇关于分布式系统的学习笔记,主要内容有分布式系统的定义、常用分布式方案以及分布式和集群的对比,下面一起来看看吧~
5276
2020-06-09 11:12:49
大数据软件学习入门技巧
大数据软件学习入门技巧,一般而言,在进行大数据处理时,会先使用大数据数据库,如 MongoDB、 GBase等。然后利用数据仓库工具,对数据进行清理、转换、处理,得出有价值的数据。接着用数据建模工具建模。最终用大数据工具进行可视化分析。
4514
2020-07-06 15:07:49
大数据之Spark框架中RDD和DataFrame的区别
大数据之Spark框架中RDD和DataFrame的区别是什么?RDD(提供了一种高度受限的共享内存模型;DataFrame是一种分布式的数据集,并且以列的方式组合的。在spark中RDD、DataFrame是最常用的数据类型,在使用的过程中你知道两者的区别和各自的优势吗?关于如何具体的应用我们今天就好好的分析一下。
3715
2022-02-18 11:32:22