在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
随着大数据技术的日益深入发展,大数据测试应运而生。可以预见,大数据测试将成为软件测试工程师的发展目标之一。可能对于许多人来讲,大数据测试还是一个十分陌生的概念。实际上,大数据测试不同于传统的软件测试,在测试类型、策略和工具上,都有很大的不同。本文将为大家仔细分析一下大数据测试的发展和困境,下面我们一起来看看!
1、什么是大数据测试?
测试大数据应用更多的是对其数据处理的验证,而不是测试软件产品的单个特性。在大数据测试中,性能和功能测试是关键。在大数据测试中,测试工程师使用商品集群和其他支持组件来验证TB级数据是否成功处理。大数据测试可以大致分为数据准备校验、输出验证阶段、数据采样和自动化几个步骤。
2、大数据测试的发展优势:
(1)非结构化数据
数据量将在未来五年内增长800%,其中80%将由非结构化数据贡献。非结构化数据的质量分析将提供智能数据洞察,这通常很难用数据仓库设施和其他传统商业智能工具来确定。由于非结构化数据通常很大且不可用,因此可以对其进行挖掘以获得业务收益。准确的数据将帮助企业分析他们的业务竞争和关注他们的薄弱环节,以增强他们的实力。
(2)市场策略
如今,企业热衷于利用大数据的好处来规划他们的数字营销策略。随着web技术的进步,企业可以更容易地收集大量基于用户行为和历史的数据。他们可以把这些数据转换成一个引人注目的,个性化的体验,为每个客户谁来网站。大数据测试将帮助企业采用优化和预测性行为目标来做出更好的决策。
(3)优化数据质量
由于大数据质量差,每年企业损失820万到1亿美元。如今,大多数企业都采取了质量策略,从好的数据中识别出坏的数据,但损失仍然很大。通过将有价值的数据与半结构化和非结构化数据堆区分开来,大数据测试有助于减少此类损失。它将帮助企业大幅改善客户服务,做出更好的商业决策,增加收入。
3、大数据测试的发展困境
(1)做好质量分析
数据是组织的生命线,并且每天都在增长。如今,企业面临着数据量、种类和来源方面的挑战。结构化业务数据由来自社交媒体和其他第三方的非结构化数据和半结构化数据补充。从如此大量的数据中寻找基本数据对企业来说是一个真正的挑战,而质量分析是唯一的选择。
(2)测试大量数据
体积大,异质性是测试大量数据最大的挑战。今天,企业必须存储从各种在线和离线来源提取的PB或EB数据来进行日常业务。测试人员需要审计大量的数据,以确保它们适合于业务用途。如何为不一致的大型数据存储和准备测试用例?而且由于数据量太大,不可能进行全容量测试。
(3)大数据测试人员
大数据测试技术在发展,每个人都在努力理解处理大数据的算法。目前,大数据测试人员可以说是稀缺资源。大数据测试人员需要彻底了解大数据生态系统的组成部分。今天,测试人员理解他们必须考虑常规自动化测试和手工测试的参数的背后意义。大数据以其意想不到的格式,可能会导致自动化测试用例无法理解的问题。为这样一个大数据池创建自动化测试用例需要团队成员之间的专业知识和协调。测试团队应与开发团队和营销团队协调,了解不同资源的数据提取、数据过滤和前后处理算法。由于市场上有许多用于大数据验证的全自动测试工具,测试人员必须不可避免地拥有所需的技能集,并利用Hadoop等大数据技术。
大数据测试的发展和困境就分析到这里了。这里也为广大的技术从业者提供了一些思考,现在的IT技术迭代更新太快了。想要在激烈的职场竞争中,一直处于不败之地,就需要保持持续学习的态度,掌握最前沿的技术和知识。祝愿大家可以把握机遇,有一个更好的发展前景。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
数据挖掘、数据分析以及大数据之间的区别有哪些?
进入大数据时代,和数据相关的名词都被人们津津乐道。那数据挖掘、数据分析以及大数据之间有哪些区别呢?数据挖掘是发现信息以及收集数据的过程;数据分析则是将现有数据进行归纳以及分析得出相应结论的过程。而大数据则更加关注数据本身,重要表现就是数据量大,数据的多样性等等。
13555
2019-06-20 18:11:53
揭秘 数据分析究竟在企业经营中有什么实际作用?
在企业经营中中,我们都了解数据分析的重要性,但是很少有人能说清,数据分析究竟在企业营业中有什么实际作用。其实简单来说,数据分析的目的是把隐藏在数据背后的信息集中和提炼出来,总结出所研究对象的内在规律,帮助管理者进行有效的判断和决策。下面是数据分析在企业经营中的三大作用
9016
2019-07-12 13:11:30
大数据工程师需要具备哪些能力?
大数据工程师需要具备哪些能力?这是许多想在大数据时代把握住发展机遇的学习者,在学习大数据前共同关心的问题。其实任何一个岗位需要具备的能力无外乎两种,即在专业领域的硬实力和职场发展上的软实力。对于大数据行业来讲,要向具备其相应的专业能力,需要学习的内容有很多。下面我就来为大家一一分析,大数据工程师需要具备的各项能力和掌握的各项知识。
9584
2020-01-16 17:03:43
大数据Apache Hadoop YARN 工作原理介绍
Apache Hadoop YARN是一种新的 Hadoop 资源管理器,通用资源管理系统可为上层应用提供统一的资源管理和调度,引入为集群在利用率、资源统一管理和数据共享等方面具有很强的优势。
5605
2020-04-27 14:27:28
大数据智能与人工智能的联系和区别
现在进入了互联网时代,提出人工智能概念,人工智能已经在多个领域中实践,比如无人驾驶、图像识别、语音识别等领域。大数据不断采集、沉淀、分类等积累数据,人工智能基于大数据的支持和采集,运用于人工设定的特定性能和运算方式来实现。
6788
2020-07-27 16:48:30