在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
随着大数据技术的日益深入发展,大数据测试应运而生。可以预见,大数据测试将成为软件测试工程师的发展目标之一。可能对于许多人来讲,大数据测试还是一个十分陌生的概念。实际上,大数据测试不同于传统的软件测试,在测试类型、策略和工具上,都有很大的不同。本文将为大家仔细分析一下大数据测试的发展和困境,下面我们一起来看看!
1、什么是大数据测试?
测试大数据应用更多的是对其数据处理的验证,而不是测试软件产品的单个特性。在大数据测试中,性能和功能测试是关键。在大数据测试中,测试工程师使用商品集群和其他支持组件来验证TB级数据是否成功处理。大数据测试可以大致分为数据准备校验、输出验证阶段、数据采样和自动化几个步骤。
2、大数据测试的发展优势:
(1)非结构化数据
数据量将在未来五年内增长800%,其中80%将由非结构化数据贡献。非结构化数据的质量分析将提供智能数据洞察,这通常很难用数据仓库设施和其他传统商业智能工具来确定。由于非结构化数据通常很大且不可用,因此可以对其进行挖掘以获得业务收益。准确的数据将帮助企业分析他们的业务竞争和关注他们的薄弱环节,以增强他们的实力。
(2)市场策略
如今,企业热衷于利用大数据的好处来规划他们的数字营销策略。随着web技术的进步,企业可以更容易地收集大量基于用户行为和历史的数据。他们可以把这些数据转换成一个引人注目的,个性化的体验,为每个客户谁来网站。大数据测试将帮助企业采用优化和预测性行为目标来做出更好的决策。
(3)优化数据质量
由于大数据质量差,每年企业损失820万到1亿美元。如今,大多数企业都采取了质量策略,从好的数据中识别出坏的数据,但损失仍然很大。通过将有价值的数据与半结构化和非结构化数据堆区分开来,大数据测试有助于减少此类损失。它将帮助企业大幅改善客户服务,做出更好的商业决策,增加收入。
3、大数据测试的发展困境
(1)做好质量分析
数据是组织的生命线,并且每天都在增长。如今,企业面临着数据量、种类和来源方面的挑战。结构化业务数据由来自社交媒体和其他第三方的非结构化数据和半结构化数据补充。从如此大量的数据中寻找基本数据对企业来说是一个真正的挑战,而质量分析是唯一的选择。
(2)测试大量数据
体积大,异质性是测试大量数据最大的挑战。今天,企业必须存储从各种在线和离线来源提取的PB或EB数据来进行日常业务。测试人员需要审计大量的数据,以确保它们适合于业务用途。如何为不一致的大型数据存储和准备测试用例?而且由于数据量太大,不可能进行全容量测试。
(3)大数据测试人员
大数据测试技术在发展,每个人都在努力理解处理大数据的算法。目前,大数据测试人员可以说是稀缺资源。大数据测试人员需要彻底了解大数据生态系统的组成部分。今天,测试人员理解他们必须考虑常规自动化测试和手工测试的参数的背后意义。大数据以其意想不到的格式,可能会导致自动化测试用例无法理解的问题。为这样一个大数据池创建自动化测试用例需要团队成员之间的专业知识和协调。测试团队应与开发团队和营销团队协调,了解不同资源的数据提取、数据过滤和前后处理算法。由于市场上有许多用于大数据验证的全自动测试工具,测试人员必须不可避免地拥有所需的技能集,并利用Hadoop等大数据技术。
大数据测试的发展和困境就分析到这里了。这里也为广大的技术从业者提供了一些思考,现在的IT技术迭代更新太快了。想要在激烈的职场竞争中,一直处于不败之地,就需要保持持续学习的态度,掌握最前沿的技术和知识。祝愿大家可以把握机遇,有一个更好的发展前景。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
Kylin开发教程为什么要学习Kylin?
大数据时代为互联网创造了更多的可能与机会。面对更多的就业岗位、更高的就业薪资、更具有创造性的工作内容,很多在职人群选择进一步学习,把握好数据时代为我们带来的重大机遇。然而优质课程资源稀缺,想要学习却找到好的途径成为大家面临的难题。今天博学谷小编就针对Kylin操作系统的技能提升为大家介绍一门《基于Kylin搞定千亿级电信数据分析》课程。
5626
2019-11-07 15:52:50
大数据岗位基础要求有哪些?
大数据岗位基础要求:谈起大数据,当然少不了分析软件,这应该是做大数据工作的基础,但市场上有很多各种各样的分析软件,如果没有过人的经验,真的很难找到适合自己或者适合企业的。笔者通过各大企业对大数据相关行业的职位要求,归纳出如下要点:
5698
2020-07-06 14:22:39
大数据开发离线计算框架知识点总结
大数据开发离线计算框架知识点总结,大数据在带来发展机遇的同时,也带来了新的挑战,催生了新技术的发展和旧技术的革新。大数据离线计算技术应用于静态数据的离线计算和处理,框架设计的初衷是为了解决大规模、非实时数据计算,更加关注整个计算框架的吞吐量。
6007
2020-07-16 16:41:14
什么是大数据系统存储及管理?
根据数据存储和管理的内容范围,大数据存储及管理技术需要重点研究如何解决大数据的可存储、可表示、可处理、可靠性及有效传输等。需要解决:海量文件的存储与管理,海量小文件的传输、索引和管理,海量大文件的分块与存储,系统可扩展性与可靠性的问题。
6035
2020-12-01 14:32:47
缓存是什么?为什么要使用缓存?
缓存是什么?为什么要使用缓存?缓存是将一些需要读取数据放在磁盘或者内存中,在读取数据的时候,一般是从关系型数据库中读取数据,缓存时能够最快提高服务响应速度的优化。
6113
2022-04-07 15:07:05