在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
2020年大数据技术发展趋势如何?未来大数据技术升级迭代快,人工智能逐渐崛起,分布式存储和计算技术不断发展,法律法规逐渐规范,必将迎来大数据技术快速的发展阶段。
2020年大数据技术发展趋势:
1、大数据技术升级迭代快
大数据技术不断的更新和迭代。随着技术的不断完善,人才不断增多,技术升级的速度也在不断的提升。大数据技术的更新迭代将促进机器学习、人工智能等相关技术的发展。大数据技术更新,势必会促进其应用场景的不断加大,也就会再次扩大大数据人才的需求缺口。
2、人工智能逐渐崛起
具体计算设备、数据、算法技术:现在已经拥有建立人工智能的技术基础。人工智能还不像科幻小说中描述的那样恐怖、也无法真正取代人类的地位,但这项技术最终必将成为现实。由于机器学习方案的不断进步,已经能够通过智能手机进行语音指令识别、拥有能够预测用户喜好的媒体服务、可以在数十亿个数据点之间摸清关系脉络的软件以及善于挖掘潜在价值空间的应用程序。
3、分布式存储和计算技术发展
大数据存储和计算技术是整个大数据系统的基础。在存储方面,2000年左右谷歌等提出的文件系统(GFS)、以及随后的 Hadoop 的分布式文件系统HDFS(Hadoop Distributed File System)奠定了大数据存储技术的基础。
与传统系统相比,GFS/HDFS将计算和存储节点在物理上结合在一起,从而避免在数据密集计算中易形成的 I/O吞吐量的制约,同时这类分布式存储系统的文件系统也采用了分布式架构,能达到较高的并发访问能力。
在计算方面,谷歌MapReduce 分布式并行计算技术,是新型分布式计算技术的代表。一个 MapReduce 系统由廉价的通用服务器构成,通过添加服务器节点可线性扩展系统的总处理能力(Scale Out),在成本和可扩展性上都有巨大的优势。
4、法律法规逐渐规范
法律制度也将成为大数据发展过程中的潜在影响因素,具体效果如何取决于大家的审视角度。就目前来看,仲裁者、立法者、监管者甚至总统都在努力弄清收集到的这批庞大数据到底意味着什么,并以此为基础勾勒出某种秩序草案。
在管理流程当中,难题就是如何妥善保护消费者的个人隐私;这部分信息拥有巨大挖掘潜力、足以显着改善消费者的实际体验,但同时也会带来侵犯个人隐私的巨大风险。另外,大量宣传资金也开始涌入这一新兴领域。希望能以最划算的价格买到食材或者新服饰,也希望能够参与DNA测绘项目并拿到99美元的回报。但我们同时也需要确保自己提供的潜在敏感信息不会被泄露给他人或者出现在不应出现的场合。
大数据分析技术发展对体量庞大的结构化和半结构化数据进行高效率的深度分析,挖掘隐性知识,如从自然语言构成的文本网页中理解和识别语义、情感、意图等;对非结构化数据进行分析,将海量复杂多源的语音、图像和视频数据转化为机器可识别的、具有明确语义的信息,进而从中提取有用的知识。
大数据应用和技术起源于互联网,网站和网页的爆发式增长,搜索引擎公司最早感受到了海量数据带来的技术上的挑战,随后兴起的社交网络、视频网站、移动互联网的浪潮加剧了这一挑战。互联网企业发现新数据的增长量、多样性和对处理时效的要求是传统数据库、商业智能纵向扩展架构无法应对的。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
了解前沿技术:大数据经典应用案例分享
目前国内大部分代行的企业已经将大数据充分的运用到原来的业务之中,对于哪些目前还在互联网转型甚至没有实现互联网+转型的企业来说,能否尽快布局大数据成为企业实现快速发展的核心问题。因此我们需要跟多的了解大数据到底都可以做什么。本文为大家分享了部分大数据应用成功案例。对于企业或者开发者都可以从中找到与自己实际工作业务相关的拓展思路。
9264
2019-07-22 16:28:07
大数据在疫情中的应用场景分析
随着信息化数字时代的发展,大数据技术的应用场景越来越多,并且在我们的日常工作生活中发挥着越来越重要的作用。尤其是在这场声势浩大的新冠肺炎疫情中,大数据技术得到了充分的应用。具体的应用场景主要体现在三个方面:建立人口流动数据系统,追踪疫情最新进展以及共享公共信息平台。下面我们来看看具体的应用的分析。
21254
2020-02-24 11:05:01
数据科学的发展历程
如今,数据科学可以说是一个十分火爆的领域,我们可以看到数据科学在各行各业都得到了广泛的应用。虽然数据科学在近几年发展得如此迅猛,但是数据科学的核心技术其实早在很久以前就已经提出来了。比如数据挖掘、Hadoop、深度学习、神经网络、数据可视化、强化学习和云计算等等技术都是推动数据科学发展进程的核心手段,下面我们一起来看看吧!
9751
2020-03-26 15:36:30
数据预处理的方法有哪些?
数据处理的工作时间占据了整个数据分析项目的70%以上。因此,数据的质量直接决定了分析模型的准确性。那么,数据预处理的方法有哪些呢?比如数据清洗、数据集成、数据规约、数据变换等,其中最常用到的是数据清洗与数据集成,下面小编将来详细介绍一下这2种方法。
10128
2020-08-11 10:14:41
学习大数据开发现在好就业吗
现在开始学习大数据晚了吗?现在学习大数据后还好就业吗?随着互联网应用基础的不断普及,大数据技术已经成为互联网企业的标配。大数据技术已经在国内持续火爆了几年的时间。每年都有大量的人才涌入到大数据行业中,对于现在刚刚入场大数据开发技术的人来说,现在还有机会吗?
4023
2020-09-14 15:59:15