在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
目前大数据、人工智能、区块链已经成为未来互联网核心的发展趋势。人工智能技术还未成熟,而区块链的落地应用也缺乏市场的支撑,而大数据技术已经逐渐融入到各行各业,对于大数据开发工程师而言,哪些技术是受欢迎的?应该注重哪些方面技术的学习?
1、预测分析
数据分析是大数据最重要的应用之一,所有数据最终使用目的就是通过数据分析得到相关的结论以及预测。预测分析师一种统计或数据挖掘解决方案,包含可在结构话和非结构化数据中使用以确定未来结果的算法和技术。可为预测、优化、预报和模拟等许多其他用途而部署。SPSS这个软件相信大家已经熟悉了。用户可以根据实际需要和计算机的功能选择模块,SPSS的分析结果清洗、直观、易学易用,而且直接读取EXCEL及BDF数据文件,现已推广到多种操作系统的计算机上;
2、NoSQL数据库
非关系型数据库包括Key-value型(Redis)数据库、文档型(MonogoDB)数据库、图型(Neo4j)数据库;虽然NoSQL流行语火起来才短短一年的时间,NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题;
3、搜索和认知商业
认知时代不再是简单的数据分析与展示,它更多的是上升到一个利用数据来支撑人机交互的一种模式。也就是与人工智能相关的应用领域相结合。大数据将成为人工智能实现的奠基石;
4、流式分析
目前流式计算是业界研究的一个热点,最近Twitter、LinkedIn等公司相继开源了流式计算系统Storm、Kafka等,加上Yahoo!之前开源的S4,流式计算研究在互联网领域持续升温,流式分析可以对多个高吞吐量的数据源进行实时的清洗、聚合和分析;对存在于社交网站、博客、电子邮件、视频、新闻、电话记录、传输数据、电子感应器之中的数字格式的信息流进行快速处理并反馈的需求。目前大数据流分析平台有很多、如开源的spark,以及ibm的streams;
5、内存数据结构
通过动态随机内存访问(DRAM)、Flash和SSD等分布式存储系统提供海量数据的低延时访问和处理;
6、分布式存储系统
分布式存储是指存储节点大于一个、数据保存多副本以及高性能的计算网络;利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。当前开源的HDFS还是非常不错,有需要的朋友可以深入了解一下;
7、数据可视化
数据可视化技术是指对各类型数据源(包括hadoop上的海量数据以及实时和接近实时的分布式数据)进行显示;当前国内外数据分析展示的产品很多,如果是企业单位以及政府单位建议使用cognos,安全、稳定、功能强大、支持大数据、非常不错的选择;
8、数据整合
通过亚马逊弹性MR(EMR)、Hive、Pig、Spark、MapReduce、Couchbase、Hadoop和MongoDB等软件进行业务数据整合;
9、数据预处理
数据整合是指对数据源进行清洗、裁剪,并共享多样化数据来加快数据分析;
10、数据校验
对分布式存储系统和数据库上的海量、高频率数据集进行数据校验,去除非法数据,补全缺失。数据整合、处理、校验在目前已经统称为ETL,ETL过程可以把结构化数据以及非结构化数据进行清洗、抽取、转换成你需要的数据、同时还可以保障数据的安全性以及完整性、关于ETL的产品推荐使用datastage就行、对于任何数据源都可以完美处理。
对于从事大数据开发的技术人员而言,以上这些技术都肯定会有诸多的涉及。尤其是对于学习过博学谷大数据课程的同学,以上大部分技术相关领域都已经掌握,对于就业以及职场发展会有非常大的帮助。大数据技术必定为成为颠覆未来互联网技术领域的重要力量。包括区块链技术、人工智能技术,都可以在大数据技术的基础之上加快实现的步伐。想要学习大数据技术,大家可以通过博学谷在线课程学习。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
大数据核心技术:spark学习总结
想要学习大数据,一定要充分掌握大数据的核心技术:Hadoop、Strom、spark等等。Spark是一种与Hadoop像是的开源集群计算环境。它启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
10440
2019-06-19 17:37:43
云计算和人工智能的两大误区是什么
云计算和人工智能的两大误区是什么?云计算和人工智能两大误区:云支出正在使数据中心支出大打折扣;人工智能过度炒作在很大程度上使企业购买者失败。过早采用人工智能可能会很有趣,但同时存在着诸多问题。
4992
2020-02-12 18:17:43
大数据开发和软件开发哪个前景好?
大数据开发学习有难度,零基础入门要先学习Java语言打基础,然后进入大数据技术体系的学习,学习Hadoop、Spark、Storm等知识。软件开发工程师根据不同的学科从事的岗位也千差万别。
6103
2020-10-15 09:41:45
狂野大数据课程好学吗?难不难?
这门课程对标企业5年真实⼤数据从业⼈员的技能⽔平,因此学习这门课程需要有一定的基础,假设课程内容100%吸收⾜以对标甚⾄秒杀企业中5年⼤数据经验的开发⼈员。学成后知识储备完全胜任⾼级⼤数据开发职称。
3165
2022-09-29 16:42:05
大数据之亚秒级实时计算技术学哪些内容?
⼤数据实时计算中的核⼼框架阶段Flink,Flink在流式上的性能、容错等优势,在全球范围内快速圈粉。当今的⼤数据开发学习Flink是⾮常有必要的。学⽣通过本阶段的学习能够学习到Flink计算引擎在实时计算上的巨⼤优势,将来在企业中能够合理地运⽤Flink来解决实际的业务计算问题。
6339
2022-09-29 17:35:17