在线客服
扫描二维码
下载博学谷APP
扫描二维码
关注博学谷微信公众号
学习大数据前应该了解什么?大数据学习不能停留在理论的层面上,大数据方向切入应是全方位的,基础语言的学习只是很小的一个方面,编程落实到最后到编程思想。学习前一定要对大数据有一个整体的认识。

大数据是数据量多吗?其实并不是,通过Hadoop其中的各个组件就可以了解到,大数据并不只是数据量大而已,而是数据存储+分布式调度+数据分析的结合:数据存储 : Hadoop-HDFS用户高可靠性的来存储原始数据;分布式调度 : Hadoop-YARN 用户分布式任务调度管理分配任务;数据分析 : Hadoop-MapReduce 任务处理分析引擎。
此前的“网抑云”事件还记得吗?大数据挖掘用户心理需求推你所爱。大数据会根据歌词关键字、作者、风格、年代等归类统计后,推断出相似的歌曲,根据已有的算法,编写相应的Java程序,在Hadoop上跑job去处理数据,得到的结果再存入数据库,最后推送到用户的手机端,即推荐的“你可能喜欢”,使用该产品的用户那么多,数据量可想而知,大数据可以存放原来不敢想的数据,比如大量的请求日志,而且还能在其中进行分析。
每一个结果都需要通过大量的数据来分析出来,大数据就是起到这个作用最终来实现数据价值就是大数据的最终目标!大数据技术是未来科技的必备技能,在外行看来大数据就是噱头,华而不实,对于大数据技术来说“先是看不见,再是看不上,最后是跟不上”。做技术的一定要跟上时代,做精当下,看见未来!
打开任何一个招聘的软件可以看到,具有相同技术经验的大数据开发人员薪资颇高,已经成为互联网行业的香饽饽。而国家也出台各种大数据战略,这些都是我们投身大数据的原因。
有人说大数据不是已经很多年了吗? 现在在来说大数据是不是太晚了?
时间一点也不晚,马云说未来10年是大数据和人工智能的十年,尤其经过的一段时间的发展完善,之前少数人能够使用的大数据已经变得更加大众化了拥有了自己的生态,让使用者入门成本大幅降低,让普通开发者和小企业也可以能够比较轻松的接入到自己的业务中。
学习大数据需要掌握什么语言基础?
1、Java基础
大数据框架90%以上都是使用Java开发语言,所以如果要学习大数据技术,首先要掌握Java基础语法以及JavaEE方向的相关知识。
2、MySQL数据库
这是学习大数据必须掌握的知识之一。数据的操作语言是SQL,因此很多工具的开发目标就是能够在Hadoop上使用SQL。
3、Linux系统
大数据的框架都是安装在Linux操作系统上,因此熟练掌握Linux相关知识也是学习大数据的基础知识。
大数据的学习不能仅仅停留在理论的层面上,大数据的方向的切入是全方位的,基础语言的学习只是很小的一个方面,编程落实到最后到编程思想,有了指导思想学习起来就能方便很多。
随着互联网大潮走向低谷,同时传统企业纷纷进行数字化转型,基本各个公司都在考虑如何进一步挖掘数据价值,提高企业的运营效率。在这种趋势下,大数据技术越来越重要。所以说,未来大数据是我们打工人的必备技能之一。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
数据挖掘、数据分析以及大数据之间的区别有哪些?
进入大数据时代,和数据相关的名词都被人们津津乐道。那数据挖掘、数据分析以及大数据之间有哪些区别呢?数据挖掘是发现信息以及收集数据的过程;数据分析则是将现有数据进行归纳以及分析得出相应结论的过程。而大数据则更加关注数据本身,重要表现就是数据量大,数据的多样性等等。
14463
2019-06-20 18:11:53
大数据应用技术的发展方向分析
如今,大数据的应用对企业公司以及个人都产生了深远影响,本文就来预测一下大数据应用技术的发展方向。可以预见的是,数据资产管理、数据资产管理、AI驱动的数据基础设施、面向AI的分布式计算框架和数据安全这些都将成为大数据应用技术的发展方向。对大数据应用技术感兴趣的小伙伴,可以接着往下看小编的的详细分析。
7338
2019-10-29 17:24:18
Kylin开发教程 从原理讲解到实践演练
众所周知,Kylin是一个可扩展的超快OLAP引擎,它能够提供Hadoop ANSI SQL借口和交互式查询,还可以和BI工具无缝整合,为百亿用户构建立方体。既然学习Kylin这么有必要,那么我们该如何学习它呢?这里为大家介绍博学谷的Kylin开发教程,本教程将会对Kylin进行系统化梳理,包括了Kylin的技术架构、运维不熟、增量构建、实时构建、性能优化等内容,带领大家从原理讲解到实战演练。
5913
2019-11-25 12:22:09
数据科学的发展历程
如今,数据科学可以说是一个十分火爆的领域,我们可以看到数据科学在各行各业都得到了广泛的应用。虽然数据科学在近几年发展得如此迅猛,但是数据科学的核心技术其实早在很久以前就已经提出来了。比如数据挖掘、Hadoop、深度学习、神经网络、数据可视化、强化学习和云计算等等技术都是推动数据科学发展进程的核心手段,下面我们一起来看看吧!
10459
2020-03-26 15:36:30
数据可视化常用工具推荐
数据可视化是将数据分析的结果以图形、表格等形式展示出来,这样能我们更加清晰、明了的理解分析结果、判断数据走势等,让没有进行过数据分析的人也能清楚的了解数据中所含有的规律、趋势等。下面小编将向大家介绍几种常用的数据可视化工具,分别是Excel、BI工具以及Python的库,一起来看看吧!
6065
2020-08-13 17:22:38
