在线客服
扫描二维码
下载博学谷APP
扫描二维码
关注博学谷微信公众号
Hive是机遇Hadoop的一个数据仓库工具,它的学习成本低,可以通过类SQL语句快速实现简单的MAPReduce统计,十分适合数据仓库的统计。在Hive学习过程中必定会接触到分区,这是Hive存放数据的一种形式。查询数据时使用分区列进行过滤,只需根据列值直接扫描对应目录下的数据,不扫描其他不关心的分区,快速定位,提高查询效率。分区分为静态分区和动态分区两种形式。

静态分区
若分区的值是确定的,那么称为静态分区。新增分区或者是加载分区数据时,已经指定分区名。
create table if not exists day_part1(
uid int,
uname string
)
partitioned by(year int,month int)
row format delimited fields terminated by '\t';
##加载数据指定分区
load data local inpath '/root/Desktop/student.txt' into table day_part1 partition(year=2017,month=04);
##新增分区指定分区名
alter table day_part1 add partition(year=2017,month=1) partition(year=2016,month=12);
动态分区
分区的值是非确定的,由输入数据来确定
1、动态分区的相关属性:
hive.exec.dynamic.partition=true :是否允许动态分区
hive.exec.dynamic.partition.mode=strict :分区模式设置
strict:最少需要有一个是静态分区
nostrict:可以全部是动态分区
hive.exec.max.dynamic.partitions=1000 :允许动态分区的最大数量
hive.exec.max.dynamic.partitions.pernode =100 :单个节点上的mapper/reducer允许创建的最大分区
2、动态分区的操作
##创建临时表
create table if not exists tmp
(uid int,
commentid bigint,
recommentid bigint,
year int,
month int,
day int)
row format delimited fields terminated by '\t';
##加载数据
load data local inpath '/root/Desktop/comm' into table tmp;
##创建动态分区表
create table if not exists dyp1
(uid int,
commentid bigint,
recommentid bigint)
partitioned by(year int,month int,day int)
row format delimited fields terminated by '\t';
##严格模式
insert into table dyp1 partition(year=2016,month,day)
select uid,commentid,recommentid,month,day from tmp;
##非严格模式
##设置非严格模式动态分区
set hive.exec.dynamic.partition.mode=nostrict;
##创建动态分区表
create table if not exists dyp2
(uid int,
commentid bigint,
recommentid bigint)
partitioned by(year int,month int,day int)
row format delimited fields terminated by '\t';
##为非严格模式动态分区加载数据
insert into table dyp2 partition(year,month,day)
select uid,commentid,recommentid,year,month,day from tmp;
分区注意细节
1、尽量不要用动态分区,因为动态分区的时候,将会为每一个分区分配reducer数量,当分区数量多的时候,reducer数量将会增加,对服务器是一种灾难。
2、动态分区和静态分区的区别,静态分区不管有没有数据都将会创建该分区,动态分区是有结果集将创建,否则不创建。
3、hive动态分区的严格模式和hive提供的hive.mapred.mode的严格模式。
hive提供我们一个严格模式:为了阻止用户不小心提交恶意hql
hive.mapred.mode=nostrict : strict
如果该模式值为strict,将会阻止以下三种查询:
(1)、对分区表查询,where中过滤字段不是分区字段。
(2)、笛卡尔积join查询,join查询语句,不带on条件或者where条件。
(3)、对order by查询,有order by的查询不带limit语句。
以上就是和大家分享大数据技术分享:Hive的静态分区与动态分区。在大数据学习过程中需要掌握多种应用技术,包括Linux、Zookeeper、Hadoop、Redis、HDFS、MapReduce、Hive、lmpala、Hue、Oozie、Storm、Kafka、Spark、Scala、SparkSQL、Hbase、Flink、机器学习等核心技能。充分掌握才能快速实现大数据就业的目标。想学习大数据技术,可以通过博学谷大数据课程。因为大数据是在Java技术的基础上实现的,所以学习大数据技术之前最好具备java基础。文章部分内容整合自网络,仅供参考阅读。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
学大数据技术必须了解的大数据经典应用案例
我们已经进入了数据化的时代,大数据开发技术、数据分析已经成为目前企业最核心的关注点。数据为企业提供了更加可靠的支撑,对于优化产业结构、提升生产效率有非常明显的作用。在企业纷纷布局大数据业务的同时,大数据相关人才缺口逐渐扩大。目前国内大数据相关从业人员已经超过20万,作为大数据从业人员,必须了解一些大数据相关的经典应用案例。
7489
2019-08-22 18:03:14
大数据笔记之分布式文件存储系统
现在是大数据的时代,也是数据爆炸的时代,如何处理大数据的存储成为了摆在人们面前的难题,因此分布式文件存储系统应用而生。同时分布式文件存储系统在大数据面试中,也是一个常常可以见到的考点之一。本文为大家梳理了相关的大数据知识点,感兴趣的小伙伴可以看一看。
7326
2019-11-05 16:26:09
大数据在疫情中的应用场景分析
随着信息化数字时代的发展,大数据技术的应用场景越来越多,并且在我们的日常工作生活中发挥着越来越重要的作用。尤其是在这场声势浩大的新冠肺炎疫情中,大数据技术得到了充分的应用。具体的应用场景主要体现在三个方面:建立人口流动数据系统,追踪疫情最新进展以及共享公共信息平台。下面我们来看看具体的应用的分析。
22437
2020-02-24 11:05:01
大数据如何构建用户画像?
进入大数据时代,我们常常在谈论的一个概念就是用户画像。在互联网领域利用用户画像,可以达到精准营销的商业目的,因此这也是为什么构建用户画像在这个流量至上的年代如此重要的原因。任何企业公司的产品要想做好精细化运营,都需要先构建该产品和服务的用户画像。下面我们一起看看用户画像的概念和构建方法。
6220
2020-03-31 11:12:22
ZooKeeper的节点类型有哪些?
ZooKeeper是个分布式开放源码的分布式应用程序协调服务,是Hadoop和Hbase的重要组件。ZooKeeper服务端支持7种节点类型分别是:持久、持久顺序、临时、临时顺序、容器、持久 TTL、持久顺序 TTL。
6105
2021-05-28 15:12:05
