在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
Hive是机遇Hadoop的一个数据仓库工具,它的学习成本低,可以通过类SQL语句快速实现简单的MAPReduce统计,十分适合数据仓库的统计。在Hive学习过程中必定会接触到分区,这是Hive存放数据的一种形式。查询数据时使用分区列进行过滤,只需根据列值直接扫描对应目录下的数据,不扫描其他不关心的分区,快速定位,提高查询效率。分区分为静态分区和动态分区两种形式。
静态分区
若分区的值是确定的,那么称为静态分区。新增分区或者是加载分区数据时,已经指定分区名。
create table if not exists day_part1(
uid int,
uname string
)
partitioned by(year int,month int)
row format delimited fields terminated by '\t';
##加载数据指定分区
load data local inpath '/root/Desktop/student.txt' into table day_part1 partition(year=2017,month=04);
##新增分区指定分区名
alter table day_part1 add partition(year=2017,month=1) partition(year=2016,month=12);
动态分区
分区的值是非确定的,由输入数据来确定
1、动态分区的相关属性:
hive.exec.dynamic.partition=true :是否允许动态分区
hive.exec.dynamic.partition.mode=strict :分区模式设置
strict:最少需要有一个是静态分区
nostrict:可以全部是动态分区
hive.exec.max.dynamic.partitions=1000 :允许动态分区的最大数量
hive.exec.max.dynamic.partitions.pernode =100 :单个节点上的mapper/reducer允许创建的最大分区
2、动态分区的操作
##创建临时表
create table if not exists tmp
(uid int,
commentid bigint,
recommentid bigint,
year int,
month int,
day int)
row format delimited fields terminated by '\t';
##加载数据
load data local inpath '/root/Desktop/comm' into table tmp;
##创建动态分区表
create table if not exists dyp1
(uid int,
commentid bigint,
recommentid bigint)
partitioned by(year int,month int,day int)
row format delimited fields terminated by '\t';
##严格模式
insert into table dyp1 partition(year=2016,month,day)
select uid,commentid,recommentid,month,day from tmp;
##非严格模式
##设置非严格模式动态分区
set hive.exec.dynamic.partition.mode=nostrict;
##创建动态分区表
create table if not exists dyp2
(uid int,
commentid bigint,
recommentid bigint)
partitioned by(year int,month int,day int)
row format delimited fields terminated by '\t';
##为非严格模式动态分区加载数据
insert into table dyp2 partition(year,month,day)
select uid,commentid,recommentid,year,month,day from tmp;
分区注意细节
1、尽量不要用动态分区,因为动态分区的时候,将会为每一个分区分配reducer数量,当分区数量多的时候,reducer数量将会增加,对服务器是一种灾难。
2、动态分区和静态分区的区别,静态分区不管有没有数据都将会创建该分区,动态分区是有结果集将创建,否则不创建。
3、hive动态分区的严格模式和hive提供的hive.mapred.mode的严格模式。
hive提供我们一个严格模式:为了阻止用户不小心提交恶意hql
hive.mapred.mode=nostrict : strict
如果该模式值为strict,将会阻止以下三种查询:
(1)、对分区表查询,where中过滤字段不是分区字段。
(2)、笛卡尔积join查询,join查询语句,不带on条件或者where条件。
(3)、对order by查询,有order by的查询不带limit语句。
以上就是和大家分享大数据技术分享:Hive的静态分区与动态分区。在大数据学习过程中需要掌握多种应用技术,包括Linux、Zookeeper、Hadoop、Redis、HDFS、MapReduce、Hive、lmpala、Hue、Oozie、Storm、Kafka、Spark、Scala、SparkSQL、Hbase、Flink、机器学习等核心技能。充分掌握才能快速实现大数据就业的目标。想学习大数据技术,可以通过博学谷大数据课程。因为大数据是在Java技术的基础上实现的,所以学习大数据技术之前最好具备java基础。文章部分内容整合自网络,仅供参考阅读。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
大数据可视化相关工具介绍
大数据的实际应用中,有一个重要的环节,就是实现数据的可视化。这是数据分析结论导向的重要体现。你可以通过可视化的数据形式明晰的了解各种数据的分布以及占比,例如大数据招聘市场的分布、目前行业岗位薪资与学历的关系、大数据热门技术的应用比例等等。本文就和大家介绍一些大数据可视化的使用工具
8214
2019-08-09 18:04:01
大数据疫情防控应用 大数据与个人隐私之间存在的冲突
大数据与个人隐私之间存在的冲突,网上出现多起以寻找确诊病例密切接触者为名,公布个人姓名、手机号码、户籍地详址、身份证号码等个人隐私的事件,且电信运营、铁路部门和各大互联网公司等事实上掌握了大量公民的个人信息,特别是联系方式、地理位置和行踪轨,这无疑是掌握了用户的个人隐私。
8746
2020-02-21 10:17:35
大数据测试的发展和困境分析
随着大数据技术的日益深入发展,大数据测试应运而生。可以预见,大数据测试将成为软件测试工程师的发展目标之一。可能对于许多人来讲,大数据测试还是一个十分陌生的概念。实际上,大数据测试不同于传统的软件测试,在测试类型、策略和工具上,都有很大的不同。本文将为大家仔细分析一下大数据测试的发展和困境,下面我们一起来看看!
6878
2020-03-03 23:44:15
Hadoop集群动态扩容讲解
今天本文要讲解的是Hadoop集群动态扩容的内容,那么什么是动态扩容呢?数据量随着公司业务的增长越来越大,原有的datanode节点的容量,已经不能满足存储数据的需求,需要在原有集群基础上,动态添加新的数据节点,这就是我们说的动态扩容。下面一起来看看基础准备、添加datanode、datanode负载均衡服务、添加nodemanager等相关内容吧~
6693
2020-06-08 10:56:55
什么是大数据系统存储及管理?
根据数据存储和管理的内容范围,大数据存储及管理技术需要重点研究如何解决大数据的可存储、可表示、可处理、可靠性及有效传输等。需要解决:海量文件的存储与管理,海量小文件的传输、索引和管理,海量大文件的分块与存储,系统可扩展性与可靠性的问题。
6427
2020-12-01 14:32:47