在线客服
扫描二维码
下载博学谷APP
扫描二维码
关注博学谷微信公众号
Hive是机遇Hadoop的一个数据仓库工具,它的学习成本低,可以通过类SQL语句快速实现简单的MAPReduce统计,十分适合数据仓库的统计。在Hive学习过程中必定会接触到分区,这是Hive存放数据的一种形式。查询数据时使用分区列进行过滤,只需根据列值直接扫描对应目录下的数据,不扫描其他不关心的分区,快速定位,提高查询效率。分区分为静态分区和动态分区两种形式。

静态分区
若分区的值是确定的,那么称为静态分区。新增分区或者是加载分区数据时,已经指定分区名。
create table if not exists day_part1(
uid int,
uname string
)
partitioned by(year int,month int)
row format delimited fields terminated by '\t';
##加载数据指定分区
load data local inpath '/root/Desktop/student.txt' into table day_part1 partition(year=2017,month=04);
##新增分区指定分区名
alter table day_part1 add partition(year=2017,month=1) partition(year=2016,month=12);
动态分区
分区的值是非确定的,由输入数据来确定
1、动态分区的相关属性:
hive.exec.dynamic.partition=true :是否允许动态分区
hive.exec.dynamic.partition.mode=strict :分区模式设置
strict:最少需要有一个是静态分区
nostrict:可以全部是动态分区
hive.exec.max.dynamic.partitions=1000 :允许动态分区的最大数量
hive.exec.max.dynamic.partitions.pernode =100 :单个节点上的mapper/reducer允许创建的最大分区
2、动态分区的操作
##创建临时表
create table if not exists tmp
(uid int,
commentid bigint,
recommentid bigint,
year int,
month int,
day int)
row format delimited fields terminated by '\t';
##加载数据
load data local inpath '/root/Desktop/comm' into table tmp;
##创建动态分区表
create table if not exists dyp1
(uid int,
commentid bigint,
recommentid bigint)
partitioned by(year int,month int,day int)
row format delimited fields terminated by '\t';
##严格模式
insert into table dyp1 partition(year=2016,month,day)
select uid,commentid,recommentid,month,day from tmp;
##非严格模式
##设置非严格模式动态分区
set hive.exec.dynamic.partition.mode=nostrict;
##创建动态分区表
create table if not exists dyp2
(uid int,
commentid bigint,
recommentid bigint)
partitioned by(year int,month int,day int)
row format delimited fields terminated by '\t';
##为非严格模式动态分区加载数据
insert into table dyp2 partition(year,month,day)
select uid,commentid,recommentid,year,month,day from tmp;
分区注意细节
1、尽量不要用动态分区,因为动态分区的时候,将会为每一个分区分配reducer数量,当分区数量多的时候,reducer数量将会增加,对服务器是一种灾难。
2、动态分区和静态分区的区别,静态分区不管有没有数据都将会创建该分区,动态分区是有结果集将创建,否则不创建。
3、hive动态分区的严格模式和hive提供的hive.mapred.mode的严格模式。
hive提供我们一个严格模式:为了阻止用户不小心提交恶意hql
hive.mapred.mode=nostrict : strict
如果该模式值为strict,将会阻止以下三种查询:
(1)、对分区表查询,where中过滤字段不是分区字段。
(2)、笛卡尔积join查询,join查询语句,不带on条件或者where条件。
(3)、对order by查询,有order by的查询不带limit语句。
以上就是和大家分享大数据技术分享:Hive的静态分区与动态分区。在大数据学习过程中需要掌握多种应用技术,包括Linux、Zookeeper、Hadoop、Redis、HDFS、MapReduce、Hive、lmpala、Hue、Oozie、Storm、Kafka、Spark、Scala、SparkSQL、Hbase、Flink、机器学习等核心技能。充分掌握才能快速实现大数据就业的目标。想学习大数据技术,可以通过博学谷大数据课程。因为大数据是在Java技术的基础上实现的,所以学习大数据技术之前最好具备java基础。文章部分内容整合自网络,仅供参考阅读。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
2020年大数据发展前景如何?
在2020年将看到越来越多的组织利用对象存储从非结构化数据创建结构化/标记数据,从而允许使用元数据来理解人工智能和机器工作负载生成数据。当数据变得足够大时,就会施加类似引力的力,使其难以移动,同时还可以吸引更多数据。
6479
2020-02-05 14:40:18
数据仓库是什么?基本概念讲解
对于大数据的学习者来讲,深入理解数据仓库是很重要的。本文将对数据仓库的基本概念进行讲解,大家可以在看完数据仓库的概念、主要特征以及分层架构之后,真正理解数据仓库是什么。
8473
2020-06-04 11:58:15
HDFS入门基础学习总结
HDFS全称就是Hadoop分布式文件系统,作为Hadoop的核心组件,它提供了最底层的分布式存储服务。本文整理了HDFS设计目标和HDFS的重要特性等等内容,下面一起来看HDFS入门基础学习总结吧~
5286
2020-06-09 16:19:01
大数据课程有哪些新增内容和升级更新?
距离传智播客在2012年发布的第一版大数据课程,已经整整八年了。在这期间,大数据行业发生了翻天覆地的变化,为了不断适应行业的发展和市场变更,大数据学科随时准备着让课程保持同步更新迭代,始终奔跑在行业前沿。下面我们一起来看看大数据课程有哪些新增内容和升级更新。
5706
2020-07-16 11:21:10
2021年大数据发展趋势及动态
大数据已经走单纯的技术架构和技术体系,走向了社会基础设施。2020年“新基建”就将“大数据中心”定义为数字新基础设施的重要建设内容。基于隐私计算的数据流通技术成为实现数据联合计算的主要思路。隐私计算在保护数据本身不对外泄露的前提下实现了数据融合,为安全合规的数据流通带来了可能。
5639
2021-01-19 15:12:03
