在线客服
扫描二维码
下载博学谷APP
扫描二维码
关注博学谷微信公众号
对于大数据的学习者来讲,深入理解数据仓库是很重要的。本文将对数据仓库的基本概念进行讲解,大家可以在看完数据仓库的概念、主要特征以及分层架构之后,真正理解数据仓库是什么。

1、数据仓库的概念
数据仓库,全称是Data Warehouse,简写DWH。数据仓库的目的是构建面向分析的集成化数据环境,为企业提供决策支持。它出于分析性报告和决策支持目的而创建。正因为它叫 “仓库”,而不是叫“工厂”。所以数据仓库本身并不“生产”任何数据,同时自身也不需要“消费”任何的数据。数据来源于外部,并且开放给外部应用。
2、数据仓库的主要特征
(1)面向主题
传统数据库中,最大的特点是面向应用进行数据的组织,各个业务系统可能是相互分离的。而数据仓库则是面向主题的。主题是一个抽象的概念,是较高层次上企业信息系统中的数据综合、归类并进行分析利用的抽象。在逻辑意义上,它是对应企业中某一宏观分析领域所涉及的分析对象。
(2)集成性
通过对分散、独立、异构的数据库数据进行抽取、清理、转换和汇总便得到了数据仓库的数据,这样保证了数据仓库内的数据关于整个企业的一致性。数据仓库中的综合数据不能从原有的数据库系统直接得到。因此在数据进入数据仓库之前,必然要经过统一与综合,这一步是数据仓库建设中最关键、最复杂的一步。
(4)时变性
数据仓库包含各种粒度的历史数据。数据仓库中的数据可能与某个特定日期、星期、月份、季度或者年份有关。数据仓库的目的是通过分析企业过去一段时间业务的经营状况,挖掘其中隐藏的模式。虽然数据仓库的用户不能修改数据,但并不是说数据仓库的数据是永远不变的。分析的结果只能反映过去的情况,当业务变化后,挖掘出的模式会失去时效性。因此数据仓库的数据需要更新,以适应决策的需要。从这个角度讲,数据仓库建设是一个项目,更是一个过程。
3、数据仓库分层架构
按照数据流入流出的过程,数据仓库架构可分为三层——源数据、数据仓库、数据应用。数据仓库的数据来源于不同的源数据,并提供多样的数据应用,数据自下而上流入数据仓库后向上层开放应用,而数据仓库只是中间集成化数据管理的一个平台。
(1)源数据层(ODS):此层数据无任何更改,直接沿用外围系统数据结构和数据,不对外开放;为临时存储层,是接口数据的临时存储区域,为后一步的数据处理做准备。
(2)数据仓库层(DW):也称为细节层,DW层的数据应该是一致的、准确的、干净的数据,即对源系统数据进行了清洗(去除了杂质)后的数据。
(3)数据应用层(DA或APP):前端应用直接读取的数据源;根据报表、专题分析需求而计算生成的数据。
以上就是数据仓库是什么的基本概念讲解,想要了解更多关于大数据的干货内容,尽在博学谷资讯大数据栏目~
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
学数据挖掘技术能做哪些工作?可以从事哪些行业?
学数据挖掘技术能做哪些工作?可以从事哪些行业?随着大数据时代的来临,大数据早已渗透我们生活和工作的方方面面。尤其是数据挖掘更是被各行各业广泛应用,像互联网、电商、金融、医疗等等行业对掌握数据挖掘技术的人才更是有着相当优渥的报酬。至于数据挖掘的相关岗位更是选择多多,下面来具体了解一下吧!
10620
2019-10-15 10:29:58
大数据应用技术的发展方向分析
如今,大数据的应用对企业公司以及个人都产生了深远影响,本文就来预测一下大数据应用技术的发展方向。可以预见的是,数据资产管理、数据资产管理、AI驱动的数据基础设施、面向AI的分布式计算框架和数据安全这些都将成为大数据应用技术的发展方向。对大数据应用技术感兴趣的小伙伴,可以接着往下看小编的的详细分析。
7304
2019-10-29 17:24:18
大数据开发工程师需要了解的热门技术
目前大数据、人工智能、区块链已经成为未来互联网核心的发展趋势。人工智能技术还未成熟,而区块链的落地应用也缺乏市场的支撑,而大数据技术已经逐渐融入到各行各业,对于大数据开发工程师而言,哪些技术是受欢迎的?应该注重哪些方面技术的学习?
6344
2019-12-10 18:47:11
大数据之亚秒级实时计算技术学哪些内容?
⼤数据实时计算中的核⼼框架阶段Flink,Flink在流式上的性能、容错等优势,在全球范围内快速圈粉。当今的⼤数据开发学习Flink是⾮常有必要的。学⽣通过本阶段的学习能够学习到Flink计算引擎在实时计算上的巨⼤优势,将来在企业中能够合理地运⽤Flink来解决实际的业务计算问题。
6968
2022-09-29 17:35:17
工信部测算到2025年中国大数据产业规模将突破3万亿元
工信部测算到2025年中国大数据产业规模将突破3万亿元,全球互联网、大数据、云计算、数字孪生、元宇宙等数字技术加速创新趋势,探讨数字科技革命和产业变革的新机遇,聚焦大数据与实体经济、社会治理、民生服务、乡村振兴的深度融合,发布一批大数据创新应用场景,探讨共享应用场景创新的价值。
3327
2022-06-09 15:29:53
