在线客服
扫描二维码
下载博学谷APP
扫描二维码
关注博学谷微信公众号
众所周知,Spark作为一个集群计算平台和内存计算系统,它是专门为速度和通用目标设计的。从事大数据岗位的工作者,像是ETL工程师、Spark工程师、Hbase工程师、用户画像系统工程师都需要熟练掌握Spark相关知识点,因此Spark也是常常会出现的必考面试题。下面我整理了一些Spark面试题,并附上了答案,一起来看看做一做吧!

面试题1:Spark 运行架构的特点是什么?
答案:每个 Application 获取专属的 executor 进程,该进程在 Application 期间一直驻留,并以多线程方式运行 tasks。Spark 任务与资源管理器无关,只要能够获取 executor 进程,并能保持相互通信就可以了。提交 SparkContext 的 Client 应该靠近 Worker 节点(运行 Executor 的节点),最好是在同一个 Rack 里,因为 Spark 程序运行过程中 SparkContext 和Executor 之间有大量的信息交换;如果想在远程集群中运行,最好使用 RPC 将SparkContext 提交给集群,不要远离 Worker 运行 SparkContext。Task 采用了数据本地性和推测执行的优化机制。
面试题2:描述一下Spark运行的基本流程。
答案:这个是面试大数据岗位的一道基础题。Spark 运行基本流程可以参考下面的示意图:
面试题3:Spark 中的 RDD 是什么?
答案:RDD(Resilient Distributed Dataset)叫做分布式数据集,是 Spark 中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD 中的数据可以存储在内存或者是磁盘,而且RDD 中的分区是可以改变的。
面试题4:Spark 中的常用算子有哪些区别?
答案:map : 用 于 遍 历 RDD , 将 函 数 f 应 用 于 每 一 个 元 素 , 返 回 新 的
RDD(transformation 算子);foreach:用于遍历 RDD,将函数 f 应用于每一个元素,无返回值(action 算子);mapPartitions:用于遍历操作 RDD 中的每一个分区,返回生成一个新的RDD(transformation 算子);foreachPartition: 用于遍历操作 RDD 中的每一个分区。无返回值(action 算子)。总结的来说,一般使用 mapPartitions 或者 foreachPartition 算子比 map 和 foreach更加高效,推荐使用。
面试题5:spark 中 cache 和 persist 有什么区别?
答案:cache:缓存数据,默认是缓存在内存中,其本质还是调用 persist;persist:缓存数据,有丰富的数据缓存策略。数据可以保存在内存也可以保存在磁盘中,使用的时候指定对应的缓存级别就可以了。
面试题6:如何解决 spark 中的数据倾斜问题?
答案:这也是在大数据岗位上会常常遇到的问题,当我们发现数据倾斜的时候,不要急于提高 executor 的资源,修改参数或是修改程序,首先要检查数据本身,是否存在异常数据。如果是数据问题造成的数据倾斜,找出异常的 key,如果任务长时间卡在最后最后 1 个(几个)任务,首先要对 key 进行抽样分析,判断是哪些 key 造成的。选取 key,对数据进行抽样,统计出现的次数,根据出现次数大小排序取出前几个。
面试题7:谈谈 你对spark中宽窄依赖的认识。
答案:RDD 和它依赖的父 RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。宽依赖指的是多个子 RDD 的 Partition 会依赖同一个父 RDD 的 Partition窄依赖:指的是每一个父 RDD 的 Partition 最多被子 RDD 的一个 Partition使用。
以上就是大数据岗位中常见的Spark面试题整理,大家可以根据附上的答案对Spark的相关知识点进行查漏补缺。如果想要了解更多的大数据面试题,可以上博学谷官网学习大数据的就业班课程,除了面试题整理,课程还包括了各种就业指导内容,欢迎大家试听体验。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
大数据面试题 Hadoop的联邦机制
大数据学习需要掌握很多技术知识点,包括Linux、Zookeeper、Hadoop、Redis、HDFS、MapReduce、Hive、lmpala、Hue、Oozie、Storm、Kafka、Spark、Scala、SparkSQL、Hbase、Flink、机器学习等。今天主要和大家分享一下Hadoop的联邦机制。
10816
2019-07-18 23:40:42
大数据面试题 Spark知识点汇总
Spark是一个实现快速通用的集群计算平台,它是基于内存的迭代计算框架,适用于需要多次操作特定数据集的应用场合。在大数据库架构中常常需要使用Spark,Spark的知识点一直也是大数据面试题的重点,本文整理了Spark知识点汇总,现在就和大家一起梳理下吧!
8114
2019-07-25 15:33:51
ETL工程师是干什么的?ETL工程师工作内容介绍
随着大数据时代的来临,ETL工程师逐渐出现在大众的视野中,那么ETL工程师是干什么的呢?直白一点说,ETL工程师又叫数据库工程师,需要掌握各种流行的编程语言,每天的工作就是和数据库打交道,下面详细介绍一下ETL工程师的工作内容,以便于大家进一步了解这个职业。
59401
2019-09-15 12:34:13
学大数据有哪些高薪工作可以选?
大数据行业目前有多火爆就不用多说了,我们生活和工作的方方面面都和大数据技术息息相关。由于大数据在各个行业的广泛应用,导致了大数据人才缺口的进一步扩大。可能有人会问了,学大数据有哪些高薪工作可以选呢?首先大数据的整体就业薪资都挺高,而且的就业方向也很多。下面为大家介绍一些大数据行业的高薪岗位。
5361
2020-08-13 15:28:17
算法工程师和程序员区别多大?一样吗?
程序员从事IT行业人员的统称,而算法工程师是程序员的一个类别,主要设计算法的工程师,能力较多数程序员更为突出。目前算法工程师的待遇整体稍高,岗位要求相对更高。很多人更倾向于选择算法岗位,算法岗的饱和程度比研发岗要求严重建议慎重选择。
25243
2020-09-23 16:55:43
