在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
云计算和人工智能的两大误区是什么?云计算和人工智能两大误区:云支出正在使数据中心支出大打折扣;人工智能过度炒作在很大程度上使企业购买者失败。过早采用人工智能可能会很有趣,但同时存在着诸多问题。
云计算和人工智能误区一:企业的数据中心注定不复存在
到2025年将有80%的企业关闭其数据中心。但是专业人士给出了他的思考的一些的理由:“随着互连服务、云计算提供商、物联网、边缘服务和SaaS产品的不断增加,留在传统数据中心拓扑结构中的原理将有优势有限。”
业务需要灵活性,但IT需要控制。按企业的条件使用IT。数据引力,尽管这种引力作用了一段时间,但现在产生了相反的效果:越来越多的数据诞生于云中,并且将会在那里存储、处理和分析。
在云计算增长的同时,数据中心支出并未下降。尽管有预测说云计算将迅速取代数据中心,但这还是可以做到的。大多数人认为,在云计算上花费1美元,将是在传统数据中心上花费的1美元。事实并非如此。”
云计算和人工智能误区误区二:人工智能让企业失败
高管们在人工智能方面做大做强的雄心超出了企业的交付能力:“如果没有基础技术的需求,这些项目注定会失败。需要管理人员来引导每个人进行变更,但有时似乎只是为了变更。”问题不是因为“人工智能失败”,而是因为人们没有适当地为自己准备什么期望人工智能如何做。
进入这个行业的数据科学家们准备不足,但被过度炒作,他们已经准备好了去寻找成功之路。不幸的是,他们可能试图用错误的技术来解决错误的问题,她指出:“现实情况是,‘数据科学’从来没有像现在这样重视机器学习,而是重视数据的清理、成型和移动。”
人工智能可能比想像的更基本。它还可能由于与该技术无关的原因而失败。也许,也许这根本不是失败。至少没有其他IT项目如此。与其他任何IT项目相比,人工智能项目失败的可能性不会或多或少。
项目很少会失败,因为技术无法实现预期的目标。项目失败是因为买方希望技术无法交付的东西,或者组织在实施方面大失所望。人工智能项目与企业资源计划(ERP)项目或任何其他IT项目相同。它们根据组织的项目管理流程而成功或失败。
我们要对云计算和人工智能两个误区有清晰的认识,云计算和人工智能的发展必定会带我们进入一个全新的时代。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
大数据技术自学能学会吗?大数据应该如何自学?
大数据本质也是数据,但是又有了新的特征,包括数据来源广、数据格式多样化(结构化数据、非结构化数据、Excel文件、文本文件等)、数据量大(最少也是TB级别的、甚至可能是PB级别)、数据增长速度快等。那大数据技术自学能学会吗?大数据应该如何自学呢?
6331
2019-08-14 10:21:23
大数据Kafka进阶面试题汇总
Kafka是一个分布式、支持分区的、多副本的,基于zookeeper协调的分布式消息系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景。在大数据面试中,Kafka也是一个必考点。因此小编汇总了历年来比较经典常见的大数据Kafka进阶面试题。
5583
2019-08-22 19:26:09
Flink从入门到实践课程介绍
Flink是解放程序员的一款开源大数据计算引擎,本文将为大家介绍Flink从入门到实践的课程详情,主要包括课程的学习内容、亮点特色和学习收获,对Flink感兴趣或者有学习需要的小伙伴可以看一看。
4117
2020-04-21 18:22:10
大数据课程有哪些实战项目?
随着大数据行业的蓬勃发展,就业市场对于大数据从业者也提出了更高的要求。为了培养出真正掌握大数据开发能力的人才,博学谷的大数据课程除了有大数据理论知识的系统学习,还有涉及各个领域的大数据开发实战项目。那么大数据课程有哪些实战项目呢?一起来看看吧!
6195
2020-07-21 16:16:30
大数据spark框架常用数据类型RDD与DataFrame的区别
大数据spark框架常用数据类型RDD与DataFrame的区别,在spark中,RDD、DataFrame是最常用的数据类型,在Apache Spark 里面DF 优于RDD但也包含了RDD的特性,在使用的过程中分别介绍下两者的区别和各自的优势。
2609
2022-04-19 11:12:45