在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
云计算和人工智能的两大误区是什么?云计算和人工智能两大误区:云支出正在使数据中心支出大打折扣;人工智能过度炒作在很大程度上使企业购买者失败。过早采用人工智能可能会很有趣,但同时存在着诸多问题。
云计算和人工智能误区一:企业的数据中心注定不复存在
到2025年将有80%的企业关闭其数据中心。但是专业人士给出了他的思考的一些的理由:“随着互连服务、云计算提供商、物联网、边缘服务和SaaS产品的不断增加,留在传统数据中心拓扑结构中的原理将有优势有限。”
业务需要灵活性,但IT需要控制。按企业的条件使用IT。数据引力,尽管这种引力作用了一段时间,但现在产生了相反的效果:越来越多的数据诞生于云中,并且将会在那里存储、处理和分析。
在云计算增长的同时,数据中心支出并未下降。尽管有预测说云计算将迅速取代数据中心,但这还是可以做到的。大多数人认为,在云计算上花费1美元,将是在传统数据中心上花费的1美元。事实并非如此。”
云计算和人工智能误区误区二:人工智能让企业失败
高管们在人工智能方面做大做强的雄心超出了企业的交付能力:“如果没有基础技术的需求,这些项目注定会失败。需要管理人员来引导每个人进行变更,但有时似乎只是为了变更。”问题不是因为“人工智能失败”,而是因为人们没有适当地为自己准备什么期望人工智能如何做。
进入这个行业的数据科学家们准备不足,但被过度炒作,他们已经准备好了去寻找成功之路。不幸的是,他们可能试图用错误的技术来解决错误的问题,她指出:“现实情况是,‘数据科学’从来没有像现在这样重视机器学习,而是重视数据的清理、成型和移动。”
人工智能可能比想像的更基本。它还可能由于与该技术无关的原因而失败。也许,也许这根本不是失败。至少没有其他IT项目如此。与其他任何IT项目相比,人工智能项目失败的可能性不会或多或少。
项目很少会失败,因为技术无法实现预期的目标。项目失败是因为买方希望技术无法交付的东西,或者组织在实施方面大失所望。人工智能项目与企业资源计划(ERP)项目或任何其他IT项目相同。它们根据组织的项目管理流程而成功或失败。
我们要对云计算和人工智能两个误区有清晰的认识,云计算和人工智能的发展必定会带我们进入一个全新的时代。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
程序员必须掌握的大数据分析核心技术有哪些?
程序员必须掌握的大数据分析核心技术有哪些?大数据分析技术现是一种传统的技术分析模型,主要对数据进行筛选、过滤之后进行分析。随着银行业、保险业,电子商务的不断发展,非结构数据的数量越来越多,增加了大数据分析的难度,对于大数据方面的程序员要求越来越高。
5939
2020-03-05 15:19:17
云计算大数据培训学什么课程?
博学谷大数据课程为具有一定编程开发经验的学员设计,从大数据基础增强开始,讲解大数据开发过程中必备的离线数据分析、实时数据分析和内存数据计算等重要内容;涵盖了大数据体系中核心技术,包含Linux、Zookeeper、Hadoop、Redis、HDFS、MapReduce、Hive、Impala、Hue、Oozie、Flink、kafka、Spark、Scala、SparkSQL、Hbase等。
7016
2020-05-13 14:42:30
分布式系统学习笔记
分布式系统其实就是为了处理更多数据而存在的。对于大数据学习者来讲,分布式系统入门还是很容易的。本文为大家总结整理了一篇关于分布式系统的学习笔记,主要内容有分布式系统的定义、常用分布式方案以及分布式和集群的对比,下面一起来看看吧~
5140
2020-06-09 11:12:49
学大数据技术与应用的女生多吗?适合吗?
随着人工智能的发展,对于大数据方面的人才需要越来越大,高校里面选择大数据技术的人不在少数,女生适不适合学大数据技术与应用这个问题跟女生适不适合学IT技术一样,没有性别限制,女生更适合数据分析方便的工作。
9125
2020-09-23 10:31:38
大数据的属性是什么?如何划分?
大数据的属性是什么?如何划分?拥有大数据是件令人兴奋的事,但在实践中处理大数据存在一定的困难,如数据量过大事情就会变得更困难。为了处理大数据要采用高性能算法,这些算法也已展现出惊人的优越性。
4348
2022-05-04 15:28:28