在线客服
扫描二维码
下载博学谷APP
扫描二维码
关注博学谷微信公众号
云计算和人工智能的两大误区是什么?云计算和人工智能两大误区:云支出正在使数据中心支出大打折扣;人工智能过度炒作在很大程度上使企业购买者失败。过早采用人工智能可能会很有趣,但同时存在着诸多问题。

云计算和人工智能误区一:企业的数据中心注定不复存在
到2025年将有80%的企业关闭其数据中心。但是专业人士给出了他的思考的一些的理由:“随着互连服务、云计算提供商、物联网、边缘服务和SaaS产品的不断增加,留在传统数据中心拓扑结构中的原理将有优势有限。”
业务需要灵活性,但IT需要控制。按企业的条件使用IT。数据引力,尽管这种引力作用了一段时间,但现在产生了相反的效果:越来越多的数据诞生于云中,并且将会在那里存储、处理和分析。
在云计算增长的同时,数据中心支出并未下降。尽管有预测说云计算将迅速取代数据中心,但这还是可以做到的。大多数人认为,在云计算上花费1美元,将是在传统数据中心上花费的1美元。事实并非如此。”
云计算和人工智能误区误区二:人工智能让企业失败
高管们在人工智能方面做大做强的雄心超出了企业的交付能力:“如果没有基础技术的需求,这些项目注定会失败。需要管理人员来引导每个人进行变更,但有时似乎只是为了变更。”问题不是因为“人工智能失败”,而是因为人们没有适当地为自己准备什么期望人工智能如何做。
进入这个行业的数据科学家们准备不足,但被过度炒作,他们已经准备好了去寻找成功之路。不幸的是,他们可能试图用错误的技术来解决错误的问题,她指出:“现实情况是,‘数据科学’从来没有像现在这样重视机器学习,而是重视数据的清理、成型和移动。”
人工智能可能比想像的更基本。它还可能由于与该技术无关的原因而失败。也许,也许这根本不是失败。至少没有其他IT项目如此。与其他任何IT项目相比,人工智能项目失败的可能性不会或多或少。
项目很少会失败,因为技术无法实现预期的目标。项目失败是因为买方希望技术无法交付的东西,或者组织在实施方面大失所望。人工智能项目与企业资源计划(ERP)项目或任何其他IT项目相同。它们根据组织的项目管理流程而成功或失败。
我们要对云计算和人工智能两个误区有清晰的认识,云计算和人工智能的发展必定会带我们进入一个全新的时代。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
做大数据开发累吗?需不需要加班?
做大数据开发累吗?需不需要加班?首先我们来了解大数据的工作内容,用一句话总结就是分析历史、预测未来、优化选择。总体上看来,大数据开发的工作需要按部就班进行,因此一般不需要加班,但是偶尔也会因为额外的需求增加以及对项目进度的把控而需要加班。不过,就与其它的研发技术岗位比较,大数据开发已经算是比较轻松的工作了。
18024
2019-09-16 10:10:54
什么人适合学习大数据开发?学大数据难吗?
有不少应届大学毕业生和0基础人群选择学大数据,但是要选择零基础的大数据培训班,从Java基础开始学习,由浅入深掌握离线数据分析、实时数据分析和内存数据计算等重要内容。
5277
2020-11-26 15:20:18
大数据开发为什么要参加系统学习呢?
自从发展大数据产业被写入政府工作报告、BAT高薪聘请专业大数据人才之后,很多小白也开始纷纷转行进入大数据领域。很多的转型者都将参加培训机构看成是自己转型最高效的方式。
4308
2020-12-10 15:31:43
入行大数据学习路线分享 学习不迷路
入行大数据学习路线分享 学习不迷路,想要从事大数据技术开发工作请问要怎么做,学习路线是什么?从哪里开始学?学哪些?对于想学大数据的人群有诸多的疑问,大数据本质上是海量数据。以往的数据开发,需要一定的Java基础和工作经验,门槛高入门难。如果零基础入门数据开发行业的小伙伴可以从Python语言入手。
3299
2022-02-18 11:06:17
大数据的属性是什么?如何划分?
大数据的属性是什么?如何划分?拥有大数据是件令人兴奋的事,但在实践中处理大数据存在一定的困难,如数据量过大事情就会变得更困难。为了处理大数据要采用高性能算法,这些算法也已展现出惊人的优越性。
5290
2022-05-04 15:28:28
