在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
Spark作为一种分布式的计算框架,类似于大数据开发中Hadoop生态圈的MapReduce,计算思想和MR非常相似,两者都是分而治之的思想,但使用率要比MR高很多。本文整理了关于Spark运行架构的大数据面试题,内容包括Spark运行的基本流程、架构特点、优势。
1、Spark 运行基本流程:
(1)构建 Spark Application 的运行环境(启动 SparkContext),SparkContext 向资源管理器(可以是 Standalone、Mesos 或 YARN)注册并申请运行 Executor 资源;
(2)资源管理器分配 Executor 资源并启动 Executor,Executor 运行情况将随着心跳发送到资源管理器上;
(3)SparkContext 构建成 DAG 图,将 DAG 图分解成 Stage,并把 Taskset发送给 Task Scheduler。Executor 向 SparkContext 申请 Task,Task Scheduler 将Task 发放给 Executor 运行同时 SparkContext 将应用程序代码发放给 Executor。
(4)Task 在 Executor 上运行,运行完毕释放所有资源。
2、Spark 运行架构特点:
(1)每个 Application 获取专属的 executor 进程,该进程在 Application 期间一直驻留,并以多线程方式运行 tasks。
(2)Spark 任务与资源管理器无关,只要能够获取 executor 进程,并能保持相互通信就可以了。
(3)提交 SparkContext 的 Client 应该靠近 Worker 节点(运行 Executor 的节点),最好是在同一个 Rack 里,因为 Spark 程序运行过程中 SparkContext 和Executor 之间有大量的信息交换;如果想在远程集群中运行,最好使用 RPC 将SparkContext 提交给集群,不要远离 Worker 运行 SparkContext。
(4)Task 采用了数据本地性和推测执行的优化机制。
3、Spark的优势:
(1)计算效率高
资源复用;粗粒度的资源调度。
(2)使用方便
支持使用多门语言来编写;提供了超过80多种方法来供我们使用。
(3)通用性强
Spark生态圈中的组件都是基于SparkCore封装起来的。
(4)适应性强
可以接受上百种数据源;可以运行在各种各样的资源调度框架上。
以上就是大数据面试题,所有关于Spark运行架构的内容,不知道对大家梳理Spark运行架构的知识点,有没有帮助?
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
大数据工程师面试时需要注意的那些致命判断题
大数据工程师属于IT行业里面的高薪岗位,所以企业在招聘的时候不仅仅要考虑他们的专业技能,还要考察大数据工程师对于问题的判断能力,从而保障项目的高效率执行。所以和大家分享一些大数据工程师面试时需要注意的那些致命判断题。
7930
2019-06-27 18:23:44
大数据Hbase面试宝典(下)
在大数据Hbase的面试中只有做好充足的准备,才能以不变应万变。下面和大家分享小编最后整理的大数据Hbase面试宝典最终章。
7342
2019-07-04 18:28:51
大数据面试题 Hadoop/MapReduce,Spark,Strom,Hive 的特点及适用场景
随着移动互联网的发展,云计算大数据开发求职者越来越多,面对如此激烈的市场竞争,小编特为大家整理了大数据面试题:Hadoop/MapReduce,Spark,Strom,Hive 的特点及适用场景。
9251
2019-07-09 15:08:42
大数据Hbase经典面试题汇总
本文是根据市场需求和许多程序员面试的反馈而整理出来的,里面汇总了近些年来有关Hbase知识点的大数据经典面试题。希望本文能帮助求职者梳理Hbase知识点,让求职者在面试过程中胸有成竹。
9280
2019-08-05 19:10:38
大数据疑难解答 Hbase内部是什么机制?
众所周知,HBase是一个非关系型数据库,它的特征是分布式、列式存储、开源和版本化。无论是在大数据的面试中,还是大数据的工作中,这都是一个经常会出现的难题,然而却很少人能够说清Hbase内部机制。今天我们就花些时间聊聊Hbase内部是什么机制。
7056
2019-10-17 18:13:28