在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
大数据之Spark框架中RDD和DataFrame的区别是什么?RDD(提供了一种高度受限的共享内存模型;DataFrame是一种分布式的数据集,并且以列的方式组合的。在spark中RDD、DataFrame是最常用的数据类型,在使用的过程中你知道两者的区别和各自的优势吗?关于如何具体的应用我们今天就好好的分析一下。
一、RDD、DataFrame分别是什么?
1、什么是RDD?
RDD(Resilient Distributed Datasets)提供了一种高度受限的共享内存模型。即RDD是只读的记录分区的集合,只能通过在其他RDD执行确定的转换操作(如map、join和group by)而创建,然而这些限制使得实现容错的开销很低。RDD仍然足以表示很多类型的计算,包括MapReduce和专用的迭代编程模型(如Pregel)等。
2、什么是DataFrame?
DataFrame是一种分布式的数据集,并且以列的方式组合的。类似于关系型数据库中的表。可以说是一个具有良好优化技术的关系表。DataFrame背后的思想是允许处理大量结构化数据。提供了一些抽象的操作,如select、filter、aggregation、plot。DataFrame包含带schema的行。schema是数据结构的说明。相当于具有schema的RDD。
二、RDD、DataFrame有什么特性?
在Apache Spark 里面DF 优于RDD,但也包含了RDD的特性。RDD和DataFrame的共同特征是不可性、内存运行、弹性、分布式计算能力。
它允许用户将结构强加到分布式数据集合上。因此提供了更高层次的抽象。我们可以从不同的数据源构建DataFrame。例如结构化数据文件、Hive中的表、外部数据库或现有的RDDs。DataFrame的应用程序编程接口(api)可以在各种语言中使用,包括Python、Scala、Java和R。
1、RDD五大特性:
1.(必须的)可分区的: 每一个分区对应就是一个Task线程。
2.(必须的)计算函数(对每个分区进行计算操作)。
3.(必须的)存在依赖关系。
4.(可选的)对于key-value数据存在分区计算函数。
5.(可选的)移动数据不如移动计算(将计算程序运行在离数据越近越好)。
2、DataFrame特性:
1.支持从KB到PB级的数据量
2.支持多种数据格式和多种存储系统
3.通过Catalyst优化器进行先进的优化生成代码
4.通过Spark无缝集成主流大数据工具与基础设施
5.API支持Python、Java、Scala和R语言
三、RDD与DataFrame的区别
RDD是弹性分布式数据集,数据集的概念比较强一点。容器可以装任意类型的可序列化元素(支持泛型)RDD的缺点是无从知道每个元素的【内部字段】信息。意思是下图不知道Person对象的姓名、年龄等。
DataFrame也是弹性分布式数据集,但是本质上是一个分布式数据表,因此称为分布式表更准确。DataFrame每个元素不是泛型对象,而是Row对象。
DataFrame的缺点是Spark SQL DataFrame API 不支持编译时类型安全,因此,如果结构未知,则不能操作数据;同时,一旦将域对象转换为Data frame ,则域对象不能重构。
DataFrame=RDD-【泛型】+schema+方便的SQL操作+【catalyst】优化
DataFrame本质上是一个【分布式数据表】
DataFrame优于RDD,因为它提供了内存管理和优化的执行计划。总结为以下两点:
a.自定义内存管理:当数据以二进制格式存储在堆外内存时,会节省大量内存。除此之外,没有垃圾回收(GC)开销。还避免了昂贵的Java序列化。因为数据是以二进制格式存储的,并且内存的schema是已知的。
b.优化执行计划:这也称为查询优化器。可以为查询的执行创建一个优化的执行计划。优化执行计划完成后最终将在RDD上运行执行。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
学大数据需要掌握哪些基础?应该如何学习大数据?
学大数据需要掌握哪些基础?应该如何学习大数据?甚至大数据需要掌握哪些知识?大数据已经在通信、IT、金融等领域得到了广泛应用,根据预测,未来3-5年内大数据行业会呈现井喷式的发展。现在入行大数据行业将是一个大的机遇。下面小编与大家分析一下学大数据需要掌握哪些基础以及应该如何学习大数据。
8286
2019-08-08 14:17:52
数据分析师获取数据的方式有哪些?
数据分析师工作的第一步就是获取数据,也就是数据采集。获取数据的方式有很多,本文将着重介绍一下数据分析中的数据来源。一般来讲,数据来源主要分为两大类,企业外部来源和内部来源。其中外部来源包括外部购买、网络爬取、免费开源数据等,内部数据来源包括销售数据、考勤数据、财务数据等。
7441
2020-08-07 18:19:53
大数据自学要多久?为什么零基础自学大数据那么久?
伴随着大数据时代的冲击,大数据开发相关的技术人才成为目前招聘市场炙手可热的高薪岗位,越来越多想要通过技术获得高薪工作的同学选择大数据技术方向。我们知道目前学习大数据可以通过自学或者参加培训两种方式,参加大数据培训一般5-6个月就可以掌握大数据技术,那自学大数据的话要多久呢?
6722
2020-09-14 15:56:48
大数据批流处理之Lambda架构学习
大数据批流处理之Lambda架构,Lambda架构是当前大数据中批流处理方向影响最为深刻、应用最为广泛的架构。对于在云端的数据中心实现针对海量历史数据的批量计算及优化需要分别在云端、边缘端实现针对流数据的实时处理的场景。
3801
2022-03-02 10:17:27
大数据之亚秒级实时计算技术学哪些内容?
⼤数据实时计算中的核⼼框架阶段Flink,Flink在流式上的性能、容错等优势,在全球范围内快速圈粉。当今的⼤数据开发学习Flink是⾮常有必要的。学⽣通过本阶段的学习能够学习到Flink计算引擎在实时计算上的巨⼤优势,将来在企业中能够合理地运⽤Flink来解决实际的业务计算问题。
6332
2022-09-29 17:35:17