在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
无基础人员转行做机器学习可以吗?机器学习需要一定数学基础,没有相关的了解需要重新学习。转行机器学习不适用所有人,可不可以转行需要具体结合自身的情况。入门机器学习有一定的门槛要慎重决定。
任何机器学习系统的关键部分就是数据。考虑到额外的算法、巧妙的编程和大量的更精确的数据的选择。
什么是机器学习?机器学习是人工智能的一个子集,即用机器去学习以前的经验。与传统的编程不同,开发人员需要预测每一个潜在的条件进行编程,一个机器学习的解决方案可以有效地基于数据来适应输出的结果。
一个机器学习的算法并没有真正地编写代码,但建立了一个关于真实世界的计算机模型,然后通过数据训练模型。
机器学习原理:垃圾邮件过滤是一个很好的例子,它利用机器学习技术来学习如何从数百万封邮件中识别垃圾邮件,其中就用到了统计学技术。
例:如果每100个电子邮件中的85个,其中包括“便宜”和“伟哥”这两个词的邮件被认为是垃圾邮件,我们可以说有85%的概率,确定它是垃圾邮件。并通过其它几个指标(例如,从来没给你发送过邮件的人)结合起来,利用数十亿个电子邮件进行算法测试,随着训练次数不断增加来提升准确率。
深度学习并不等于人工智能,它只是一种算法,和普通的机器学习算法一样,是解决问题的一种方法。真要区分起来,人工智能、机器学习和深度学习,三者大概是下图这种关系。人工智能是一个很大的概念,机器学习是其中的一个子集,而深度学习又是机器学习的一个子集。
深度学习不是什么新技术,深度学习的概念源于人工神经网络的研究,早在上世纪 40 年代,通用计算机问世之前,科学家就提出了人工神经网络的概念。而那个时候的计算机刚刚开始发展,速度非常慢,最简单的网络也得数天才能训练完毕,效率极其低下,因此在接下来的十几年都没有被大量使用。近些年,随着算力的提升,GPU、TPU 的应用,神经网络得到了重大发展。
同机器学习方法一样,深度学习方法也有监督学习与无监督学习之分。例如,卷积神经网络(Convolutional Neural Networks,简称 CNN)就是一种深度的监督学习下的机器学习模型,而深度置信网络(Deep Belief Nets,简称 DBN)就是一种无监督学习下的机器学习模型。深度学习的”深度“是指从”输入层“到”输出层“所经历层次的数目,即”隐藏层“的层数,层数越多,深度也越深。
所以越是复杂的选择问题,越需要深度的层次多。除了层数多外,每层”神经元“-小圆圈的数目也要多。例如,AlphaGo 的策略网络是 13 层,每一层的神经元数量为 192 个。深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
了解前沿技术:大数据经典应用案例分享
目前国内大部分代行的企业已经将大数据充分的运用到原来的业务之中,对于哪些目前还在互联网转型甚至没有实现互联网+转型的企业来说,能否尽快布局大数据成为企业实现快速发展的核心问题。因此我们需要跟多的了解大数据到底都可以做什么。本文为大家分享了部分大数据应用成功案例。对于企业或者开发者都可以从中找到与自己实际工作业务相关的拓展思路。
8995
2019-07-22 16:28:07
大数据HIve数据仓库应用案例讲解分析
如今,大数据的大浪已经把我们每个人都卷入其中,随着大数据技术一起引起大众注意的还有HIve数据仓库。作为大数据分析的核心工具之一,它一直发挥着为企业提供决策支持的重要作用。因此掌握Hive是入门大数据学习的关键之一,下面我们就一起来看看HIve数据仓库应用案例讲解。
7180
2019-09-20 16:55:35
分析Nginx访问日志需要学什么?
需要掌握Spark SQL核心知识,分析Nginx访问日志掌握SparkSQL数据分析能力,SparkSQL调优方式及其核心思想。通过思维导图的方式对学习课程所涉及的知识。
5065
2020-02-04 14:13:42
什么是数据科学异常值检测原理?
什么是数据科学异常值检测原理?异常值的检测方法有基于统计的方法,基于聚类的方法,以及一些专门检测异常值的方法等。使用pandas,可以直接使用describe()来观察数据的统计性描述,或者简单使用散点图也能很清晰的观察到异常值的存在。
7303
2020-03-20 16:21:07
为什么大数据技术那么火?
大数据技术的概念早在2008年被Google提出。在我国2012年提出《大数据研究和发展计划》,从此我国的开放、共享和只能的大数据时代正式开启。随着一线互联网企业在大数据领域的成熟应用,以及国内政策的支持。2016年,云计算大数据技术再次成为人们所追捧的热门技术,与此同时国内大数据人才培养体系逐渐完善,为大数据的普及应用提供源源不断的人才支撑。
4205
2020-09-15 17:36:12