在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
数据可视化是将数据分析的结果以图形、表格等形式展示出来,这样能我们更加清晰、明了的理解分析结果、判断数据走势等,让没有进行过数据分析的人也能清楚的了解数据中所含有的规律、趋势等。下面小编将向大家介绍几种常用的数据可视化工具,分别是Excel、BI工具以及Python的库,一起来看看吧!
1、Excel
Excel是我们非常熟悉的办公软件,你可能不知道,Excel也能实现数据可视化,如果用法得当能做出非常酷炫的可视化效果,并且入手简单,适合初学者。PowerView和PowerMap是Excel里面比较高阶的数据可视化功能了,PowerMap其实就是我们说的三维地图,通过PowerView和PowerMap这两个区域,我们基本可以实现大部分的数据可视化内容了。下图是利用Excel绘制的2019年某超市产品每月销售额:
2、BI工具
BI(Business Intelligence)工具将数据分析人员从大量、简陋的数据图表分析中解放出来,采用商业智能报表工具实现美观清晰、模块化、动态更新的数据可视化展示,让管理层或决策者能够基于事实结果做决策。常见的BI工具有:PowerBI、Tableau、FineBI等,下面小编简单介绍一下PowerBI,帮助你更加方便的展示数据分析结果。
Power BI 是Microsoft公司自主研发发布的最新可视化工具,它结合了Power Query、Power Privot、Power View和Power Map等一系列工具的经验成果。最重要的是它可以将我们在Excel里的数据通过报表的形象呈现给用户,并且在Excel 2016和Office 365 Excel中都提供了Power BI插件。Power BI界面由报表编辑器、顶部导航栏和报表画布3个部分组成,通过这个3个部分我们可以轻松实现数据图、表的可视化展示。如下图所示:
3、Python库
Python在数据可视化方面有着独特的优势,越来越多的应用于数据分析,这得益于Python中丰富的数据分析库。Python中常用的数据分析相关的库有Numpy、Scipy、Pandas、Matplotlib、Seaborn,其中Numpy、Scipy主要负责科学计算,Pandas负责数据处理,Matplotlib、Seaborn负责数据可视化。比如说Matplotlib,它是一款非常流行的 Python 库,可以用来简单地创建数据可视化方案,我们可以通过它来画散点图、折线图、直方图、柱状图、箱形图等。
数据可视化是数据科学家工作中的重要组成部分,创建可视化方法确实有助于使事情变得更加清晰易懂,特别是对于大型、高维数据集。在项目结束时,以清晰、简洁和引人注目的方式展现最终结果是非常重要的,因为你的受众往往是非技术型客户,只有这样他们才可以理解。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
大数据核心技术:spark学习总结
想要学习大数据,一定要充分掌握大数据的核心技术:Hadoop、Strom、spark等等。Spark是一种与Hadoop像是的开源集群计算环境。它启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
10166
2019-06-19 17:37:43
揭秘 数据分析究竟在企业经营中有什么实际作用?
在企业经营中中,我们都了解数据分析的重要性,但是很少有人能说清,数据分析究竟在企业营业中有什么实际作用。其实简单来说,数据分析的目的是把隐藏在数据背后的信息集中和提炼出来,总结出所研究对象的内在规律,帮助管理者进行有效的判断和决策。下面是数据分析在企业经营中的三大作用
8972
2019-07-12 13:11:30
程序员必须掌握的大数据分析核心技术有哪些?
程序员必须掌握的大数据分析核心技术有哪些?大数据分析技术现是一种传统的技术分析模型,主要对数据进行筛选、过滤之后进行分析。随着银行业、保险业,电子商务的不断发展,非结构数据的数量越来越多,增加了大数据分析的难度,对于大数据方面的程序员要求越来越高。
6121
2020-03-05 15:19:17
什么是数据科学异常值检测原理?
什么是数据科学异常值检测原理?异常值的检测方法有基于统计的方法,基于聚类的方法,以及一些专门检测异常值的方法等。使用pandas,可以直接使用describe()来观察数据的统计性描述,或者简单使用散点图也能很清晰的观察到异常值的存在。
7596
2020-03-20 16:21:07
大数据开发的前景和就业如何?该如何去学习它?
大数据开发的前景和就业如何?该如何去学习它? 从岗位招聘和投递的供求对比来看,互联网核心的技术/测试/运维仍保持着较为密集的人才需求,主要体现在企业对以人工 智能、数字孪生为代表的高技术岗位的需求,此类岗位同比保有两位数的高增长,相关从业者仍有较大的择业空间与机会。
3962
2022-07-25 11:32:15