在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
数据可视化是将数据分析的结果以图形、表格等形式展示出来,这样能我们更加清晰、明了的理解分析结果、判断数据走势等,让没有进行过数据分析的人也能清楚的了解数据中所含有的规律、趋势等。下面小编将向大家介绍几种常用的数据可视化工具,分别是Excel、BI工具以及Python的库,一起来看看吧!
1、Excel
Excel是我们非常熟悉的办公软件,你可能不知道,Excel也能实现数据可视化,如果用法得当能做出非常酷炫的可视化效果,并且入手简单,适合初学者。PowerView和PowerMap是Excel里面比较高阶的数据可视化功能了,PowerMap其实就是我们说的三维地图,通过PowerView和PowerMap这两个区域,我们基本可以实现大部分的数据可视化内容了。下图是利用Excel绘制的2019年某超市产品每月销售额:
2、BI工具
BI(Business Intelligence)工具将数据分析人员从大量、简陋的数据图表分析中解放出来,采用商业智能报表工具实现美观清晰、模块化、动态更新的数据可视化展示,让管理层或决策者能够基于事实结果做决策。常见的BI工具有:PowerBI、Tableau、FineBI等,下面小编简单介绍一下PowerBI,帮助你更加方便的展示数据分析结果。
Power BI 是Microsoft公司自主研发发布的最新可视化工具,它结合了Power Query、Power Privot、Power View和Power Map等一系列工具的经验成果。最重要的是它可以将我们在Excel里的数据通过报表的形象呈现给用户,并且在Excel 2016和Office 365 Excel中都提供了Power BI插件。Power BI界面由报表编辑器、顶部导航栏和报表画布3个部分组成,通过这个3个部分我们可以轻松实现数据图、表的可视化展示。如下图所示:
3、Python库
Python在数据可视化方面有着独特的优势,越来越多的应用于数据分析,这得益于Python中丰富的数据分析库。Python中常用的数据分析相关的库有Numpy、Scipy、Pandas、Matplotlib、Seaborn,其中Numpy、Scipy主要负责科学计算,Pandas负责数据处理,Matplotlib、Seaborn负责数据可视化。比如说Matplotlib,它是一款非常流行的 Python 库,可以用来简单地创建数据可视化方案,我们可以通过它来画散点图、折线图、直方图、柱状图、箱形图等。
数据可视化是数据科学家工作中的重要组成部分,创建可视化方法确实有助于使事情变得更加清晰易懂,特别是对于大型、高维数据集。在项目结束时,以清晰、简洁和引人注目的方式展现最终结果是非常重要的,因为你的受众往往是非技术型客户,只有这样他们才可以理解。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
大数据思维到底是什么?
大数据并不是简单的描述大量的数据,其中涉及到很多的数据分析以及技术实现的问题。现在很多大数据专家,学者纷纷提出大数据思维的概念以及外延理解,无论是哪个版本,大数据思维主要包含全样思维、容错思维、以及相关思维几个方面。那大数据思维到底是什么呢?接下来为大家详细说明。
16768
2019-06-24 18:22:26
博学谷云计算大数据培训班课程怎么样?
在线学习已经成为现在年轻人最主要的学习途径。博学谷作为国内高端的IT在线教育平台,依托传智播客13年教学经验的沉淀,推出云计算大数据培训课程。每年都有非常多的小伙伴在博学谷平台学习,对于还在观望的同学,博学谷云计算大数据培训班课程怎么样?在博学谷学习有什么优势呢?
6075
2019-09-06 18:22:40
数据科学的发展历程
如今,数据科学可以说是一个十分火爆的领域,我们可以看到数据科学在各行各业都得到了广泛的应用。虽然数据科学在近几年发展得如此迅猛,但是数据科学的核心技术其实早在很久以前就已经提出来了。比如数据挖掘、Hadoop、深度学习、神经网络、数据可视化、强化学习和云计算等等技术都是推动数据科学发展进程的核心手段,下面我们一起来看看吧!
9957
2020-03-26 15:36:30
分布式系统学习笔记
分布式系统其实就是为了处理更多数据而存在的。对于大数据学习者来讲,分布式系统入门还是很容易的。本文为大家总结整理了一篇关于分布式系统的学习笔记,主要内容有分布式系统的定义、常用分布式方案以及分布式和集群的对比,下面一起来看看吧~
5456
2020-06-09 11:12:49
狂野大数据课程怎么样?项目实战多吗?
狂野大数据课程作为数字化人才的职场提升课程采用的是线上授课模式,学习该课程无需脱产对在职人群而言一边工作一边实现自我价值提升可谓一举两得。这门课程有一定门槛,课程适合有⼀定的IT⾏业经验,想要转⾏进⼊⼤数据开发或者有技术深造需求的同学。
3853
2022-09-16 15:31:39