在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
2022年数据与分析有哪些新趋势?今年数据和分析主要趋势:激活多样性和活力使用自适应AI系统推动增长和创新同时应对全球市场的波动;增强人员能力和决策以提供由业务模块化组件创建的丰富的、情境驱动的分析;将信任制度化以大规模地实现数据和分析的价值。管理AI风险并实施跨分布式系统、边缘环境和新兴生态系统的互联治理。
现在应该根据关键数据和分析技术趋势对于业务优先事项的紧迫性和匹配性来监测、尝试或积极投资于这些趋势,以此预测、调整并扩大数据和分析战略的价值。2022年需要关注的数据分析趋势:
1、自适应AI系统
随着决策变得更具关联性、情境性和连续性,再造决策的重要性日益增加。企业可以通过自适应AI系统来做到这一点,它可以更迅速地适应变化提供更加快速灵活的决策。同时,构建和管理自适应AI系统需要采用AI工程实践。AI工程能够通过编排和优化应用来适应、抵御或吸收各种干扰因素,促进自适应系统的管理。
2、以数据为中心
在不考虑AI特有的数据管理问题的情况下试图解决AI问题。Sallam表示:“如果没有正确的数据,构建AI就会产生风险并且可能带来危险。”因此,正式规定使用以数据为中心的AI和以AI为中心的数据至关重要。在企业的数据管理战略中,它们能够更加系统地解决数据偏差、多样性和标记问题,包括在自动化数据整合和主动元数据管理中使用数据编织。”
3、元数据驱动的数据编织
数据编织通过元数据侦听、学习并行动,能为人员和系统标记和推荐行动,最终提高企业机构内部对数据的信任和使用,减少包括设计、部署和操作在内70%的各类数据管理任务。
4、始终数据共享
虽然数据和分析领导者经常承认数据共享是一项关键的数字化转型能力,但他们缺少专业的知识,因此无法怀着信任大规模地共享数据。顺利推动数据共享并增加对匹配业务案例的正确数据的访问,应开展跨业务和行业领域的合作,这将加快对增加预算授权和数据共享投资的支持。此外,还应考虑采用数据编织设计来实现跨不同类型内部和外部数据来源的统一数据共享架构。
5、情境丰富的分析
情境丰富的分析建立在图形技术的基础之上。关于用户情境和需求的信息被保存在图形中,以便利用数据点之间的关系以及数据点本身实现更深入的分析。这能帮助您基于相似性、制约因素、路径和社区来识别和创建进一步的情境。为了捕获、保存和使用情境数据,企业需要建立数据流水线、X分析技术和AI云服务方面的能力和技能,以便处理不同类型的数据。到2025年情境驱动的分析和AI模型将取代60%建立在传统数据基础上的现有模型。
6、业务模块组合式数据分析
Gartner建议企业采用模块化的数据和分析方法或“组合式数据和分析”。业务模块组合式数据和分析建立在这一趋势的基础上,但重点正在从IT人员转向业务人员。业务模块组合式数据和分析使业务用户或业务技术人员应联合构建业务驱动的数据和分析能力。
7、以决策为中心的数据分析
决策智能学科(即对如何做出决策进行深思熟虑)正在使企业机构重新思考在数据和分析能力方面的投资。使用决策智能学科设计最佳决策,然后提供所需的信息和资源。到2023年,超过33%的大型企业机构将有从事决策智能工作的分析师,包括决策建模。
8、人员技能和素养的不足(Skills and literacy shortfall)
数据和分析领导者需要团队中的人才来推动可衡量的成果。但虚拟工作场所和激烈的人才竞争加剧了员工数据素养的不足。从现在起到2025年,大多数首席数据官(CDO)将无法培养实现战略数据驱动的既定业务目标所必需的员工数据素养。由于数据素养和员工技能提升方面的投资成本不断上升,应在与新员工的合同中加入“薪酬索回”或“费用偿还”条款,这样就能在员工离职时收回成本。
9、互联治理
企业机构需要在各个层面采取有效的治理来解决他们当前的运营挑战,而且这些治理措施还必须灵活、可扩展并且能够迅速响应不断变化的市场动态和具有战略意义的组织挑战。疫情进一步突出表明,企业迫切需要强有力的跨职能协作,并随时准备改变组织结构,以实现业务模型的敏捷性。应使用互联治理建立一个跨业务职能和地域的虚拟数据和分析治理层来实现所期望的跨企业业务成果。
10、AI风险管理
如果企业机构将时间和资源用于支持AI信任、风险和安全管理(TRiSM),那么他们就能改进AI在采用、业务目标实现以及内部和外部用户接受度方面的成果。专业人士预测,到2026年,开发出可信赖的目标导向型AI的企业机构将实现75%以上的AI创新成功率,而未能做到这一点的企业机构只有40%的成功率。通过加强对AI TRiSM的重视,企业机构就能可控而稳定地实现AI模型的实施与操作化。此外,Gartner还预测AI的失败会大幅减少,包括不完整的AI项目、意外或负面结果的减少等。
11、厂商和地区生态系统
随着各地区数据安全法的颁布,许多跨国企业机构正在为遵守当地法规而构建数据和分析生态系统,这一趋势将在新的多极世界中加速。您将需要考虑迁移和复制特定地区内的部分或全部数据和分析堆栈,并且将多云和多厂商战略管理纳入设计或预设。企业需要采取多项行动构建一个有凝聚力的云数据生态系统。应评估厂商解决方案的可扩展性和在整个生态系统的供应情况,并考虑与它们保持一致。应通过权衡单一厂商生态系统在成本、敏捷性和速度方面的优势,重新评估有利于最佳或最合适的云中端到端数据和分析能力战略的政策。
12、向边缘的扩展
在数据中心和公有云基础设施之外的分布式设备、服务器或网关中执行的数据和分析活动日益增加。它们越来越多地位于边缘计算环境,更加靠近数据和相关决策的创建和执行地点。有专业人士预测到2025年超过50%的企业关键数据将在数据中心以外或云以外的地点创建和处理。
数据分析趋势代表了业务、市场和技术动态,这些趋势还有助于确定推动新增长、效率、韧性和创新的投资优先事项。企业将数据和分析治理能力扩展到边缘环境,并通过主动元数据实现可见性。还可通过加入位于边缘的以IT为中心的技术以及用于存储和处理更加靠近设备边缘的数据且内存占用量少的嵌入式数据库,为边缘环境中的数据持久化提供支持。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
数据分析师的薪资水平如何?就业前景好吗?
互联网的快速发展为市场带来的巨大的潜力,数据时代的降临也为市场提供了更多的就业岗位,很多人都在关注数据分析师相关的岗位情况,现在数据分析师的薪资水平如何?就业前景好吗?
7813
2019-08-23 18:36:20
数据分析的行业前景如何?为什么要学习数据分析?
数据分析岗位一直存在,但是在大数据时代的快速发展过程中,数据分析再次成为焦点。企业对于数据分析的需求也越来越大。面对数据分析的高薪就业市场,依旧有很多小伙伴处在观望阶段,今天就和大家一起了解一下数据分析的行业前景如何,为什么要学习数据分析。
6659
2019-09-03 18:44:35
有大数据分析师资格证书吗?
大数据分析师是在大数据技术不断发展的过程中延伸出来的新的技术岗位。其数据分析方式与传统的数据分析师类似,但是在涉及到数据挖掘、预处理、可视化等环节时,就需要更多大数据相关的技术了。大数据分析师资格正式也就是数据分析师证书。因此是有大数据分析师资格证书的,下面就为大家详细介绍大数据分析师资格证书的相关情况。
19462
2019-09-10 18:37:42
数据挖掘的步骤有哪些?
所谓数据挖掘就是从海量的数据中,找到隐藏在数据里有价值的信息。因为这个数据是隐式的,因此想要挖掘出来并不简单。那么,如何进行数据挖掘呢?数据挖掘的步骤有哪些呢?一般来讲,数据挖掘需要经历数据收集、数据可视化、数据预处理、准备模型输入以及训练模型五大步骤,下面让我们来详细分析一下吧!
5754
2020-08-10 15:32:38
SaaS平台数据表单组件设计技巧分享
数据表单方法:固定表头、固定侧栏、自定义栏、分页器、过滤器、数据排序、多选项同时操作、简单且简约、普通的字体样式、项目链接、鼠标悬停设计指南,为大家提供有关数据表单设计的实用性建议。在实际的数据表单设计中还需要根据产品要求和用户目标进行相应的调整。
4706
2021-05-11 13:59:51
热门文章
- 前端是什么
- 前端开发的工作职责
- 前端开发需要会什么?先掌握这三大核心关键技术
- 前端开发的工作方向有哪些?
- 简历加分-4步写出HR想要的简历
- 程序员如何突击面试?两大招带你拿下面试官
- 程序员面试技巧
- 架构师的厉害之处竟然是这……
- 架构师书籍推荐
- 懂了这些,才能成为架构师 查看更多
扫描二维码,了解更多信息
