在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
大数据Hadoop生态体系中常见的子系统有哪些?Hadoop是一个针对大量数据进行分布式处理的软件框架,是一个开发和运行处理大规模数据的软件平台,是Appach的一个用Java语言实现开源软件框架,实现在大量计算机组成的集群中对海量数据进行分布式计算,具有可靠、高效、可伸缩的特点,很多程序会用到这个框架。
今天就主要介绍下大数据Hadoop生态体系中常见的子系统:
1、HDFS分布式文件系统
HDFS是Hadoop分布式文件系统,是Hadoop生态系统中的核心项目之一,是分布式计算中数据存储管理基础。HDFS具有高容错性的数据备份机制,它能检测和应对硬件故障,并在低成本的通用硬件上运行。另外,HDFS具备流式的数据访问特点,提供高吞吐量应用程序数据访问功能,适合带有大型数据集的应用程序。
2、MapReduce分布式计算框架
MapReduce是一种计算模型,用于大规模数据集(大于1TB)的并行运算。“Map”对数据集上的独立元素进行指定的操作,生成键值对形式中间结果;“Reduce”则对中间结果中相同“键”的所有“值”进行规约,以得到最终结果。MapReduce这种“分而治之”的思想,极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。
3、Yarn资源管理框架
Yarn是Hadoop2.0中的资源管理器,它可为上,层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。
4、Sqoop数据迁移工具
Sqoop是一款开源的数据导入导出工具,主要用于在Hadoop与传统的数据库间进行数据的转换,它可以将一个关系型数据库中的数据导入到Hadoop的HDFS中,也可以将HDFS的数据导出到关系型数据库中,使数据迁移变得非常方便。
5、Mahout数据挖掘算法库
Mahout是Apache旗下的一个开源项目,它提供了一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。Mahout包含许多实现,包括聚类、分类、推荐过滤、频繁子项挖掘。此外通过使用ApacheHadoop库Mahout可以有效地扩展到云中。
6、Hbase分布式存储系统
HBase是GoogleBigtable克隆版,它是一个针对结构化数据的可伸缩、高可靠、高性能、分布式和面向列的动态模式数据库。和传统关系数据库不同,HBase采用了BigTable的数据模型:增强的稀疏排序映射表(Key/Value),其中,键由行关键字、列关键字和时间戳构成。HBase提供了对大规模数据的随机、实时读写访问,同时,HBase中保存的数据可以使用MapReduce来处理,它将数据存储和并行计算完美地结合在一起。
7、Zookeeper分布式协作服务
Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和HBase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等用于构建分布式应用,减少分布式应用程序所承担的协调任务。
Hive是基于Hadoop的一个分布式数据仓库工具,可以将结构化的数据文件映射为一张数据库表,将SQL语句转换为MapReduce任务进行运行。其优点是操作简单,降低学习成本,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
9、Flume日志收集工具
Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方的能力。
大数据Hadoop生态体系中常见的子系统汇总:HDFS分布式文件系统、MapReduce分布式计算框架、Yarn资源管理框架、Sqoop数据迁移工具、Mahout数据挖掘算法库、Hbase分布式存储系统、Zookeeper分布式协作服务、Hive基于Hadoop的数据仓库、Flume日志收集工具等。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
女生学大数据很累吗?女生适合学大数据吗
女生学大数据很累吗?女生适合学大数据吗?很多人会疑惑女孩子学大数据会不会比男孩子要吃力,其实做大数据没有男女之分,女生做大数据开发也很厉害,只是愿不愿意学没有行不行。 大数据支持很多开发语言,但企业用的最多的还是JAVA,所以有一定Java语言的基础当相于有了基石,可以自己先在电脑上搭建个Hadoop环境练练手。
11087
2019-09-03 10:24:20
大数据技术应用专业有哪些?主要做什么?
大数据概念持续火爆,其核心价值并非仅仅是数据量大,更重要的是在海量的数据背后所体现出来的应用价值。如果把大数据比作一种产业链的话,那么这个产业最终实现价值的关键在于,通过对数据的“加工处理”实现数据的“增值”。因此围绕大数据技术衍生出来大量的应用专业方向。都有哪些大数据技术应用专业呢?他们主要做什么工作呢?下面我们一起来看一下。
11590
2019-09-11 18:29:17
数据可视化工具有哪些值得推荐?
数据可视化的概念想必大家都不陌生了,它是指在借助于图形化手段下,有效清晰地传达与沟通信息。使用数据可视化工具,早已成为目前读取数据的一大趋势。本文将为大家推荐一些好用的数据可视化工具,这些工具总共可以分为四类,分别是数据可视化库类;报表、BI类;大屏投放类;专业类等等。下面我们来一起看看这些值得使用的工具有哪些。
5044
2019-11-21 19:55:28
大数据软件学习入门技巧
大数据软件学习入门技巧,一般而言,在进行大数据处理时,会先使用大数据数据库,如 MongoDB、 GBase等。然后利用数据仓库工具,对数据进行清理、转换、处理,得出有价值的数据。接着用数据建模工具建模。最终用大数据工具进行可视化分析。
3920
2020-07-06 15:07:49
大数据开发和大数据分析该怎么选择?
大数据开发主要是负责大数据挖掘,大数据清洗处理,大数据建模等,负责大规模数据的处理和应用,工作以开发为主与大数据可视化分析工程师相互配合,从数据中挖掘出价值为企业业务发展提供支持。
3403
2021-01-15 10:09:54