在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
大数据时代,不仅普通用户可以享受到技术带来的便利,企业也可以从数据中提取有商业价值的信息,构建出用户画像,从而对用户行为进行分析和预测。虽然用户画像不是什么新鲜的概念,但是大数据技术的出现使得用户画像更加清晰客观。下面我们一起来看看如何利用大数据构建用户画像。
1、认识用户画像
用户画像简单来讲,就是用户信息标签化。即收集这个用户的各种数据和行为,从而得出这个用户的一些基本信息和典型特征,最后形成一个人物原型。一般用户画像会分析三个信息维度,分别是基本属性、消费购物以及社交圈。其中基本属性就是指用户的一些基本信息,比如年纪、性别、生日、学校、所在地等等。消费购物这一维度就更加具体,比如这个用户消费偏好的领域,偏好的价格,消费记录等等。
2、利用大数据构建用户画像的好处
(1)精准营销:当企业和商家掌握了用户的一定信息后,就可以构建出清晰的用户画像,这样一来就可以根据用户的偏好、收入等标签,推荐给他们会感兴趣的商品和服务。最典型的一个例子是,现在很多商家会分析产品潜在用户,针对特定群体利用短信邮件等方式进行营销。比起传统广撒网的短信营销方式,精准营销更能打动用户,而且也更加省时省力。
(2)用户统计:通过大数据我们可以对一些数据进行统计,比如我们经常会看到有一些APP的排行榜,甚至是渗透率、日活率这些具体数据都可以清晰统计出来。
(3)数据挖掘:构建智能推荐系统,利用关联规则计算,喜欢红酒的人通常喜欢什么运动品牌,利用聚类算法分析,喜欢红酒的人年龄段分布情况。
(4)进行效果评估:其实相当于市场调研、用户调研,迅速下定位服务群体,提供高水平的服务。比如你是一个买车的想要投放广告,但是不知道哪个渠道投放更好,就可以先尝试一下,看看数据反馈如何。
(5)私人订制:对服务或产品进行私人订制,然而不法商家也会利用用户画像来杀熟。
(6)业务经营分析:业务经营分析以及竞争分析,影响企业的商业决策,甚至发展战略。
3、构建用户画像的流程
(1)数据源端:一般来讲构建用户画像的数据来自于网站交易数据、用户行为数据、网络日志数据。当然也不仅限于这些数据,一些平台上还有个人征信数据。
(2)数据预处理:第一步是清洗,把一些杂乱无序的数据清洗一下,然后归纳为结构化的数据,最后是把信息标准化。我们可以把数据的预处理简单理解为把数据分类在一个表格中,这一步就是奠定数据分析的基石。
(3)行为建模:文本挖掘,自然语言处理、机器学习、预测算法、聚类算法。机器学习需要一些数学基础,比如什么统计学、线性代数等等。
(4)用户画像:通过前面的一系列手段,我们可以把数据分类成基本属性、购买能力、行为特征、兴趣爱好、心里特征以及社交网络等维度。
如何利用大数据构建用户画像?想必大家看到这里,已经有了一个大概的认知。如果大家想深入学习大数据的相关技术,欢迎上博学谷观看相关的视频课程~
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
大数据对企业的意义是什么?有哪些大数据经典案例?
大数据技术的意义是什么?对于企业而言,可以根据大数据的分析使产品更加符合消费者的需求,根据目标用户特征锁定精准用户群体,同时还可以通过数据制定更好的推广方案,提高有效转化率,也可以帮助企业在危机来临之前展示预警功能,从而降低相应的损失。那有哪些我们知道的大数据经典案例呢?下面我们一起来看一下吧。
10034
2019-07-16 18:21:12
数据能力如何体现数据价值?
数据资产的价值分两部分:数据资产直接变现的价值;通过数据资产作为资源加工后提供数据服务的业务价值。底层数据加工计算所涉及到的传输效率,决定了支撑数据产品高性能、高可靠的自身需求;应用层的传输影响了用户体验和场景实现。
7018
2020-02-13 16:45:17
数据科学与机器学习的区别是什么?
数据科学与机器学习的区别:机器学习是人工智能的一个分支,而数据科学是数据清理、准备和分析的学科。人们需要了解每种技术的工作原理,以及它们是如何一起工作的。数据科学是一种实践领域,而机器学习是一组工具和方法论。
6349
2020-05-13 15:36:30
大数据spark框架常用数据类型RDD与DataFrame的区别
大数据spark框架常用数据类型RDD与DataFrame的区别,在spark中,RDD、DataFrame是最常用的数据类型,在Apache Spark 里面DF 优于RDD但也包含了RDD的特性,在使用的过程中分别介绍下两者的区别和各自的优势。
3318
2022-04-19 11:12:45
大数据在医疗领域应用有哪些挑战?
大数据在医疗领域应用有哪些挑战?大数据已经被应用于医疗保健领域的各种应用,包括使用机器学习预测住院率、解决处方滥用问题,以及采取措施治疗肺癌。大数据灵活性使得构建特定的应用程序成为可能,这些应用可以满足人们的需求并增强跨行业的可用性。
3069
2022-05-11 15:26:36