在线客服
扫描二维码
下载博学谷APP
扫描二维码
关注博学谷微信公众号
众所周知,Pandas是基于Python平台的大数据分析与处理的利器,它可以把十分复杂的可视化过程,变得简单一点。本文将以2019年世界幸福指数的数据为例,为大家详细展示如何利用pandas绘制可视化图表。相信经过本次手把手教学,大家可以举一反三掌握绘制可视化图表的能力。感兴趣的朋友赶紧来看详细的步骤解析吧!

第一步:导入csv文件
import pandas as pd
df=pd.read_csv(‘./world-happiness-report-2019.csv’)
df.head(3)
这个csv图标的内容是各个国家按照不同维度评价的幸福指数,数据帧中一些列的名称比较冗长,可以重命名使其更加简洁:
df.rename(columns={“Country (region)”: “Country”, “Log of GDPper capita”: “Log_GDP_per_capita”, “Healthy lifeexpectancy”:”Health_life_expect”},inplace=True)
df.columns
第二步:开始绘制图形
我们可以先从简单的柱状图开始,只统计腐败程度、自由度、宽容度、社会支持等几个维度:
%matplotlib tk
df1=df[:5]
df1.plot(‘Country’,[‘Corruption’,’Freedom’,’Generosity’,’Social support’],kind = ‘bar’)
嫌直接写名称太麻烦?没关系,我们也可以用所在列的数字来绘制,比如上述4个列分别为7、6、8、5:
%matplotlib tk
df1=df[:5]
df1.plot(‘Country’,[7,6,8,5],kind = ‘bar’)
在上面的代码中kind = ‘bar’,所以绘制的图形是柱状图,如果我们把参数改成kind = ‘line’,画出的就是线状图。
df1=df[:5]
df1.plot(‘Country’,[‘Corruption’,’Freedom’,’Generosity’,’Social support’],kind = ‘line’)
第三步:设置坐标轴
(1)取值范围
在绘制可视化图表之前,大家要先设置坐标轴。使用xlim和ylim两个参数可设置x和y轴的范围。在折线图中,我们要将x轴设置为0到20,y限制为从0到100。
df1=df[:20]
df1[‘Freedom’].plot(kind=’line’,xlim=(0,20),ylim=(0,100))
(2)x、y轴刻度
有时候坐标轴上的刻度并不理想,我们希望在上面标上我们喜欢的数值。比如对于x轴,我们想要标上0、10、15和20几个值;对于y轴,我们想要标上0、50、70、100几个值,可以在xticks和yticks参数中悉数列出。
df[:20][‘Freedom’].plot(kind=’line’,xlim=(0,20),ylim=(0,100),color=’red’,xticks=([0,10,15,20]),yticks=([0,50,70,100]), title = ‘xticks’)
(3)对数坐标
如果数据的跨度范围非常大,横跨好几个数量级,那么用线性坐标就无法很好地展示数据。这时候我们需要用到对数坐标,设置方法是将logx或者logy的值设置为Ture。如果我们只想设置x轴为对数坐标,y轴仍保持线性坐标,那么
df[:20][‘Freedom’].plot(kind=’line’,xlim=(0,1000),ylim=(0,100),color=’red’,logx=True)
第四步:其他高阶用法
可以使用stacked参数来绘制带有条形图的堆叠图。在这里,我们绘制堆叠的水平条,stacked设置为True。将grid参数设置为True,可以给图表加入网格。有了subplot参数还可以绘制子图,根据需要指定行数和列数以及绘图的数量。
总的来讲,只要掌握以上的各种参数设置技巧,利用pandas绘制可视化图表也不并困难。光说不练假把式,大家要想快速上手可视化图表,不妨现在就开始尝试着绘制一下吧!
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
好用的开源数据可视化工具推荐
近年来,探索数据变得越来越重要,而数据可视化也成为一种热门的数据分析手段。它能够借助图形有效的传达信息。但是数据往往具有数百个乃至数千个维度,想要清晰的传达出有效的信息,往往需要使用好用的工具才行。本文将为大家推荐五款好用的开源数据可视化工具,赶紧来一起看一看吧!
7672
2019-11-27 17:51:42
Python数据可视化操作原理
后端是处理数据提取用户想要的数据。简单常用的是Python,相对于java,c, c++,Python简直对初学者太友好,提供丰富多彩的API接口,比如常见的降维聚类算法:PCA, t-SNE, MDS, k-means等。如果用c实现过PCA算法有几百行代码,可在Python里只需要三行代码。用Python实现对Iris数据集使用PCA算法以及展示效果。
7248
2019-12-18 17:41:06
适合新手练习的Python项目有哪些?
适合新手练习简单易上手的Python项目汇总:Web 项目设计:内容聚合器、正则表达式查询工具、网址缩短、便利贴、功能、测验、GUI 项目设计:MP3 播放器、闹铃提醒工具、文件管理器、记账功能、命令行项目设计:通讯录、网站连接检查、批量文件重命名工具、目录树生成器。
6189
2020-03-10 10:53:51
Python如何做自动化测试?
众做周知,自动测试的优势是显而易见的,它可以大大节省我们的时间,提高我们的工作效率。那么Python如何做自动化测试呢?本文将用Python编写一个简单的测试用例,并指导大家写做自动化测试的代码。如果大家对这个内容感兴趣,就赶紧来一起学习吧!
6206
2020-04-30 17:13:25
如何用Python导出测试数据?
如何用Python导出测试数据?在给领导汇报测试结果时,是不可能用代码进行演示的,所以需要将结果数据导出并将进行图表化。本文将详细的讲解如何把测试结果数据单纯地导出到 Excel 中。如果你感兴趣就一起来看看吧~
6726
2020-08-03 16:40:33
