在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
众所周知,Pandas是基于Python平台的大数据分析与处理的利器,它可以把十分复杂的可视化过程,变得简单一点。本文将以2019年世界幸福指数的数据为例,为大家详细展示如何利用pandas绘制可视化图表。相信经过本次手把手教学,大家可以举一反三掌握绘制可视化图表的能力。感兴趣的朋友赶紧来看详细的步骤解析吧!
第一步:导入csv文件
import pandas as pd
df=pd.read_csv(‘./world-happiness-report-2019.csv’)
df.head(3)
这个csv图标的内容是各个国家按照不同维度评价的幸福指数,数据帧中一些列的名称比较冗长,可以重命名使其更加简洁:
df.rename(columns={“Country (region)”: “Country”, “Log of GDPper capita”: “Log_GDP_per_capita”, “Healthy lifeexpectancy”:”Health_life_expect”},inplace=True)
df.columns
第二步:开始绘制图形
我们可以先从简单的柱状图开始,只统计腐败程度、自由度、宽容度、社会支持等几个维度:
%matplotlib tk
df1=df[:5]
df1.plot(‘Country’,[‘Corruption’,’Freedom’,’Generosity’,’Social support’],kind = ‘bar’)
嫌直接写名称太麻烦?没关系,我们也可以用所在列的数字来绘制,比如上述4个列分别为7、6、8、5:
%matplotlib tk
df1=df[:5]
df1.plot(‘Country’,[7,6,8,5],kind = ‘bar’)
在上面的代码中kind = ‘bar’,所以绘制的图形是柱状图,如果我们把参数改成kind = ‘line’,画出的就是线状图。
df1=df[:5]
df1.plot(‘Country’,[‘Corruption’,’Freedom’,’Generosity’,’Social support’],kind = ‘line’)
第三步:设置坐标轴
(1)取值范围
在绘制可视化图表之前,大家要先设置坐标轴。使用xlim和ylim两个参数可设置x和y轴的范围。在折线图中,我们要将x轴设置为0到20,y限制为从0到100。
df1=df[:20]
df1[‘Freedom’].plot(kind=’line’,xlim=(0,20),ylim=(0,100))
(2)x、y轴刻度
有时候坐标轴上的刻度并不理想,我们希望在上面标上我们喜欢的数值。比如对于x轴,我们想要标上0、10、15和20几个值;对于y轴,我们想要标上0、50、70、100几个值,可以在xticks和yticks参数中悉数列出。
df[:20][‘Freedom’].plot(kind=’line’,xlim=(0,20),ylim=(0,100),color=’red’,xticks=([0,10,15,20]),yticks=([0,50,70,100]), title = ‘xticks’)
(3)对数坐标
如果数据的跨度范围非常大,横跨好几个数量级,那么用线性坐标就无法很好地展示数据。这时候我们需要用到对数坐标,设置方法是将logx或者logy的值设置为Ture。如果我们只想设置x轴为对数坐标,y轴仍保持线性坐标,那么
df[:20][‘Freedom’].plot(kind=’line’,xlim=(0,1000),ylim=(0,100),color=’red’,logx=True)
第四步:其他高阶用法
可以使用stacked参数来绘制带有条形图的堆叠图。在这里,我们绘制堆叠的水平条,stacked设置为True。将grid参数设置为True,可以给图表加入网格。有了subplot参数还可以绘制子图,根据需要指定行数和列数以及绘图的数量。
总的来讲,只要掌握以上的各种参数设置技巧,利用pandas绘制可视化图表也不并困难。光说不练假把式,大家要想快速上手可视化图表,不妨现在就开始尝试着绘制一下吧!
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
SPSS数据分析培训学了有什么用?
SPSS数据分析培训学了到底有什么用呢?SPSS是数据分析必须掌握的统计分析工具,因此不少数据分析培训机构都把它列为必学内容。本文就来谈谈SPSS的作用和怎样利用SPSS进行数据分析,希望大家看完本文后对SPSS能有一定的了解。
12486
2019-09-02 18:44:52
数据分析常用软件有哪些?
随着市场经济的快速发展,数据分析在企业生产经营过程中的作用越来越明显。然而面对海量的数据,数据分析师不得学习一些常用的软件工具。数据分析工具有非常多中,但究其主要目的,无非就是数据收集、数据存储、数据管理、数据处理、数据分析以及数据展示等主要用途,目前数据分析领域主要使用的工具有Excel、SPSS、R、Python、MySQL等,
15668
2019-09-11 18:32:06
为什么要学习数据分析?
为什么要学习数据分析?是因为数据不会说谎!随着互联网技术的日臻成熟,获取数据的方式以及数据量越来越可靠。通过大数据技术,每天可以获取到大量的有效数据,如何让这些数据产生价值,就需要通过数据分析将复杂多样的数据制作成为有意义的数据报告。可能很多人目前没有接触过数据分析,那就跟着小编一起去了解了解为什么要学习数据分析吧。
5275
2020-08-14 14:38:44
数据科学家和数据分析师的区别在哪儿?
数据科学家和数据分析师在所用编程语言、平台/工具,以及所解决的问题方面都有共同之处。这些工具包括但不限于SQL、Tableau,以及相似的分析流程,定义问题、分析数据和输出结果;一部分差异在分析的自动化上,数据科学家专注于使用Python等语言编写算法,进行自动化分析和预测;而数据分析师则使用静态的或者过往的数据,在某些情况下会使用Tableau和SQL等工具去做预测。
5316
2020-08-19 14:50:22
Pandas进行数据清洗的方法介绍
数据清洗是一项复杂且繁琐的工作,同时也是整个数据分析过程中最为重要的环节。Pandas中常见的数据清洗操作有空值和缺失值的处理、重复值的处理、异常值的处理、统一数据格式等。
4500
2021-01-25 14:21:04