在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
Pandas作为数据分析的屠龙宝刀,毫不夸张的说,功能和优势都极其强大。像是支持GB数据处理,多样的数据清洗方法;支持多种开源可视化工具包,更加丰富的数据成果展示等等。因此如果能做好性能优化,就可以极大的提高Pandas的运行速度。本文为大家总结了四大优化Pandas性能的方法,感兴趣的朋友就赶紧看下去吧!
1、数据读取的优化
读取数据是进行数据分析前的一个必经环节,pandas中也内置了许多数据读取的函数,最常见的就是用pd.read_csv()函数从csv文件读取数据。pkl格式的数据的读取速度最快,所以对于日常的数据集(大多为csv格式),可以先用pandas读入,然后将数据转存为pkl或者hdf格式,之后每次读取数据时候,便可以节省一些时间。代码如下:
import pandas as pd
#读取csv
df = pd.read_csv('xxx.csv')
#pkl格式
df.to_pickle('xxx.pkl') #格式另存
df = pd.read_pickle('xxx.pkl') #读取
#hdf格式
df.to_hdf('xxx.hdf','df') #格式另存
df = pd.read_hdf('xxx.pkl','df') #读取
2、进行聚合操作时的优化
在使用 agg 和 transform 进行操作时,尽量使用Python的内置函数,能够提高运行效率。(数据用的还是上面的测试用例)
(1)agg+Python内置函数
(2)agg+非内置函数
可以看到对 agg 方法,使用内置函数时运行效率提升了60%。
(3)transform+Python内置函数
(4)transform+非内置函数
对 transform 方法而言,使用内置函数时运行效率提升了两倍。
3、对数据进行逐行操作时的优化
假设我们现在有这样一个电力消耗数据集,以及对应时段的电费价格。数据集记录着每小时的电力消耗,如第一行代表2001年1月13日零点消耗了0.586kwh的电。不同使用时段的电费价格不一样,我们现在的目的是求出总的电费,那么就需要将对应时段的单位电费×消耗电量。下面给出了三种写法,我们分别测试这三种处理方式,对比一下这三种写法有什么不同,代码效率上有什么差异。
#编写求得相应结果的函数
def get_cost(kwh, hour):
if 0 <= hour < 7:
rate = 0.6
elif 7 <= hour < 17:
rate = 0.68
elif 17 <= hour < 24:
rate = 0.75
else:
raise ValueError(f'Invalid hour: {hour}')
return rate * kwh
#方法一:简单循环
def loop(df):
cost_list = []
for i in range(len(df)):
energy_used = df.iloc[i]['energy_kwh']
hour = df.iloc[i]['date_time'].hour
energy_cost = get_cost(energy_used, hour)
cost_list.append(energy_cost)
df['cost'] = cost_list
#方法二:apply方法
def apply_method(df):
df['cost'] = df.apply(
lambda row: get_cost(
kwh=row['energy_kwh'],
hour=row['date_time'].hour),
axis=1)
#方法三:采用isin筛选出各时段,分段处理
df.set_index('date_time', inplace=True)
def isin_method(df):
peak_hours = df.index.hour.isin(range(17, 24))
simple_hours = df.index.hour.isin(range(7, 17))
off_peak_hours = df.index.hour.isin(range(0, 7))
df.loc[peak_hours, 'cost'] = df.loc[peak_hours, 'energy_kwh'] * 0.75
df.loc[simple_hours,'cost'] = df.loc[simple_hours, 'energy_kwh'] * 0.68
df.loc[off_peak_hours,'cost'] = df.loc[off_peak_hours, 'energy_kwh'] * 0.6
测试结果:
可以看到,采用 isin() 筛选出对应数据后分开计算的速度是简单循环的近606倍,这并不是说 isin() 有多厉害,方法三速度快是因为它采用了向量化的数据处理方式(这里的isin() 是其中一种方式,还有其他方式,大家可以尝试一下) ,这才是重点。
4、使用numba进行加速
如果在你的数据处理过程涉及到了大量的数值计算,那么使用numba可以大大加快代码的运行效率,numba使用起来也很简单,下面给大家演示一下。(代码处理不具有实际意义,只是展示一下效果)
首先需要安装numba模块
>>>pip install numba
我们用一个简单的例子测试一下numba的提速效果
import numba
@numba.vectorize
def f_with_numba(x):
return x * 2
def f_without_numba(x):
return x * 2
#方法一:apply逐行操作
df["double_energy"] = df.energy_kwh.apply(f_without_numba)
#方法二:向量化运行
df["double_energy"] = df.energy_kwh*2
#方法三:运用numba加速
#需要以numpy数组的形式传入
#否则会报错
df["double_energy"] = f_with_numba(df.energy_kwh.to_numpy())
从测试结果来看,再次凸显出向量化处理的优势,同时numba对原本速度已经很快的向量化处理也能提高一倍多的效率。更多numba的使用方法请参考numba的使用文档。
以上就是提高Pandas运行速度的优化方法,大家都get到了吗?如果想要学习Pandas的实战教程,可以上博学谷官网在线学习《数据分析进阶必备技能:Pandas》课程,想要了解课程的更多内容,可以点击课程链接https://www.boxuegu.com/promote/detail-1480.html
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
Python开发TCP和UDP的区别是什么?优缺点对比总结
Python开发TCP和UDP的区别是什么?优缺点对比总结:UDP 是面向无连接的通讯协议,UDP 数据包括目的端口号和源端口号信息。TCP 是面向连接的通讯协议,通过三次握手建立连接,通讯完成时四次挥手。UDP 速度快、操作简单、要求系统资源较少;TCP 在数据传递时,有确认、窗口、重传、阻塞等控制机制,能保证数据正确性,较为可靠。
7350
2019-07-02 16:47:16
五种方法教你Python字符串连接
字符串是Python中最常用的数据类型,在开发过程中可以对字符创进行截取并与其他字符创进行连接。下面小编整理了5种方法完成Python字符创的连接!
6487
2019-12-10 18:39:16
人工智能难学吗?通过培训能学会吗?
很多人都认为学习人工智能非常难,其实只要认真参加培训班的培训,人工智能也并不难学。以前的计算机专业是一个领域较宽的培养模式,在更多人学习java、UI设计等不同的专业时,人工智能的课程就显得更加稀少了,即算是各高校的优秀学生,在不准备对人工智能进行专研的基础下,对人工智能的了解可能只能达到“高级科普”的程度。
4966
2020-06-15 17:44:25
Python与C语言的区别是什么?
Python与C语言的区别:Python是由C语言实现,C语言是编译型语言,经过编译后生成机器码再运行,执行速度快不能跨平台,一般用于操作系统驱动等底层开发。Python是理解为解释型语言执行速度慢,由于Python虚拟机可以跨平台,Python高度集成适合于软件的快速开发。
5729
2021-03-12 16:46:44
闭包读取函数内部变量函数的基础知识分享
闭包读取函数内部变量函数的基础知识分享,闭包能够读取其他函数内部变量的函数,在本质上闭包是将函数内部和函数外部连接起来的桥梁我们需要掌握闭包的构成条件和定义闭包的语法格式。
2795
2021-12-01 16:31:23
热门文章
- 前端是什么
- 前端开发的工作职责
- 前端开发需要会什么?先掌握这三大核心关键技术
- 前端开发的工作方向有哪些?
- 简历加分-4步写出HR想要的简历
- 程序员如何突击面试?两大招带你拿下面试官
- 程序员面试技巧
- 架构师的厉害之处竟然是这……
- 架构师书籍推荐
- 懂了这些,才能成为架构师 查看更多
扫描二维码,了解更多信息