在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
Pandas作为数据分析的屠龙宝刀,毫不夸张的说,功能和优势都极其强大。像是支持GB数据处理,多样的数据清洗方法;支持多种开源可视化工具包,更加丰富的数据成果展示等等。因此如果能做好性能优化,就可以极大的提高Pandas的运行速度。本文为大家总结了四大优化Pandas性能的方法,感兴趣的朋友就赶紧看下去吧!
1、数据读取的优化
读取数据是进行数据分析前的一个必经环节,pandas中也内置了许多数据读取的函数,最常见的就是用pd.read_csv()函数从csv文件读取数据。pkl格式的数据的读取速度最快,所以对于日常的数据集(大多为csv格式),可以先用pandas读入,然后将数据转存为pkl或者hdf格式,之后每次读取数据时候,便可以节省一些时间。代码如下:
import pandas as pd
#读取csv
df = pd.read_csv('xxx.csv')
#pkl格式
df.to_pickle('xxx.pkl') #格式另存
df = pd.read_pickle('xxx.pkl') #读取
#hdf格式
df.to_hdf('xxx.hdf','df') #格式另存
df = pd.read_hdf('xxx.pkl','df') #读取
2、进行聚合操作时的优化
在使用 agg 和 transform 进行操作时,尽量使用Python的内置函数,能够提高运行效率。(数据用的还是上面的测试用例)
(1)agg+Python内置函数
(2)agg+非内置函数
可以看到对 agg 方法,使用内置函数时运行效率提升了60%。
(3)transform+Python内置函数
(4)transform+非内置函数
对 transform 方法而言,使用内置函数时运行效率提升了两倍。
3、对数据进行逐行操作时的优化
假设我们现在有这样一个电力消耗数据集,以及对应时段的电费价格。数据集记录着每小时的电力消耗,如第一行代表2001年1月13日零点消耗了0.586kwh的电。不同使用时段的电费价格不一样,我们现在的目的是求出总的电费,那么就需要将对应时段的单位电费×消耗电量。下面给出了三种写法,我们分别测试这三种处理方式,对比一下这三种写法有什么不同,代码效率上有什么差异。
#编写求得相应结果的函数
def get_cost(kwh, hour):
if 0 <= hour < 7:
rate = 0.6
elif 7 <= hour < 17:
rate = 0.68
elif 17 <= hour < 24:
rate = 0.75
else:
raise ValueError(f'Invalid hour: {hour}')
return rate * kwh
#方法一:简单循环
def loop(df):
cost_list = []
for i in range(len(df)):
energy_used = df.iloc[i]['energy_kwh']
hour = df.iloc[i]['date_time'].hour
energy_cost = get_cost(energy_used, hour)
cost_list.append(energy_cost)
df['cost'] = cost_list
#方法二:apply方法
def apply_method(df):
df['cost'] = df.apply(
lambda row: get_cost(
kwh=row['energy_kwh'],
hour=row['date_time'].hour),
axis=1)
#方法三:采用isin筛选出各时段,分段处理
df.set_index('date_time', inplace=True)
def isin_method(df):
peak_hours = df.index.hour.isin(range(17, 24))
simple_hours = df.index.hour.isin(range(7, 17))
off_peak_hours = df.index.hour.isin(range(0, 7))
df.loc[peak_hours, 'cost'] = df.loc[peak_hours, 'energy_kwh'] * 0.75
df.loc[simple_hours,'cost'] = df.loc[simple_hours, 'energy_kwh'] * 0.68
df.loc[off_peak_hours,'cost'] = df.loc[off_peak_hours, 'energy_kwh'] * 0.6
测试结果:
可以看到,采用 isin() 筛选出对应数据后分开计算的速度是简单循环的近606倍,这并不是说 isin() 有多厉害,方法三速度快是因为它采用了向量化的数据处理方式(这里的isin() 是其中一种方式,还有其他方式,大家可以尝试一下) ,这才是重点。
4、使用numba进行加速
如果在你的数据处理过程涉及到了大量的数值计算,那么使用numba可以大大加快代码的运行效率,numba使用起来也很简单,下面给大家演示一下。(代码处理不具有实际意义,只是展示一下效果)
首先需要安装numba模块
>>>pip install numba
我们用一个简单的例子测试一下numba的提速效果
import numba
@numba.vectorize
def f_with_numba(x):
return x * 2
def f_without_numba(x):
return x * 2
#方法一:apply逐行操作
df["double_energy"] = df.energy_kwh.apply(f_without_numba)
#方法二:向量化运行
df["double_energy"] = df.energy_kwh*2
#方法三:运用numba加速
#需要以numpy数组的形式传入
#否则会报错
df["double_energy"] = f_with_numba(df.energy_kwh.to_numpy())
从测试结果来看,再次凸显出向量化处理的优势,同时numba对原本速度已经很快的向量化处理也能提高一倍多的效率。更多numba的使用方法请参考numba的使用文档。
以上就是提高Pandas运行速度的优化方法,大家都get到了吗?如果想要学习Pandas的实战教程,可以上博学谷官网在线学习《数据分析进阶必备技能:Pandas》课程,想要了解课程的更多内容,可以点击课程链接https://www.boxuegu.com/promote/detail-1480.html
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
Python全栈工程师要掌握的五种知识
其实,严格点来说的说国内外python全栈的工程师并不多。因为一个合格的python全栈工程师往往在很多的知识领域都有所涉及,那么Python全栈工程师要掌握哪些基础知识呢?现在让我们来看一看。
8801
2019-07-25 16:10:35
Python基础语法总结之逻辑运算
Python里的逻辑运算有and、or 和 not,它们分别说明为与、或、非。虽然逻辑运算符在Python基础语法中是基础中的基础,但是对于零基础小白来讲,还是有一定难度的。本文就来为零基础小白好好讲解一下逻辑运算。已经学过这部分知识的小伙伴也可以再复习一遍,把基础知识掌握得更牢固。
6193
2019-10-18 11:12:31
Python工程师需要学习哪些知识
Python工程师需要学习哪些知识?Python开发需要熟悉Linux系统及Django或Tornado、Flask等开发框架;会灵活运用JavaScript、HTML前端开发有jQuery、Bootstrap、AngularJS;熟悉MySQL/Oracle数据库,SQL,Hive;高并发、大数据处理;算法和数据结构。
5309
2020-09-02 15:40:06
常用的jQuery事件有几种?分别是什么?
常用的jQuery事件有几种?分别是什么?事件方法会触发匹配元素的事件或将函数绑定到所有匹配元素的某个事件。事件方法触发器或添加一个函数到被选元素的事件处理程序。
3115
2022-01-06 10:08:49
基于Ubuntu 操作系统如何卸载软件?
Ubuntu 操作系统如何卸载软件?软件卸载有两种方式离线安装包的卸载即deb 文件格式卸载;在线安装包的卸载即apt-get 方式卸载。
3281
2022-03-29 11:42:17