在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
提到数据挖掘,大家都知道这是指通过一些专业的算法,从海量的的数据中找出需要信息的过程。可以看出,数据挖掘的算法是搜索信息的关键。一般比较经典的算法有十种,那么数据挖掘的十大算法有哪些呢?下面就来讲讲那些对数据挖掘影响重大的十大算法。
一、C4.5
C4.5 是决策树算法,其中它创造性地在决策树构造过程中就进行了剪枝,并且可以处理连续的属性,也能对不完整的数据进行处理。可以说是决策树分类中具有里程碑意义的算法。
二、朴素贝叶斯
朴素贝叶斯模型是基于概率论的原理,它的思想是对于给出的未知物体想要进行分类,就需要求解在这个未知物体出现的条件下各个类别出现的概率,哪个最大,就认为这个未知物体属于哪个分类。
三、SVM
SVM (支持向量机),是一类按监督学习方式对数据进行二元分类的广义线性分类器),其决策边界是对学习样本求解的最大边距超平面。
四、KNN
KNN 也叫 K 最近邻算法。所谓 K 近邻,就是每个样本都可以用它最接近的 K 个邻居来代表。如果一个样本,它的 K 个最接近的邻居都属于分类 A,那么这个样本也属于分类 A。
五、Adaboost
Adaboost 在训练中建立了一个联合的分类模型。boost 在英文中代表提升的意思,所以 Adaboost 是个构建分类器的提升算法。它可以让我们多个弱的分类器组成一个强的分类器。
六、PageRank
PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。
七、AdaBoost
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。
八、kNN: k-nearest neighbor classification
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
九、Naive Bayes
在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。
十、CART: 分类与回归树
CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。
以上就是数据挖掘的十大算法。随着大数据浪潮的袭来,数据挖掘成为数据分析必不可少的手段。对数据挖局感兴趣的小伙伴,赶紧上博学谷官网进行深入学习吧!
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
5分钟掌握Hadoop环境搭建流程
Hadoop是大数据技术的基础,它在大数据技术体系中的地位是非常重要的。目前Hadoop是主流的分布式系统基础架构之一,用户可以在不了解分布式底层细节的情况下,开发分布式程序,充分利用集群的威力进行高速运算和存储。所以对于Hadoop基础知识的掌握的扎实程度,会决定你在大数据技术道路上走多远。首先我们来学习一下Hadoop环境搭建流程吧。
7868
2019-08-14 10:19:35
大数据Hadoop中HDFS 存储的机制?
HDFS即Hadoop分布式文件系统。它是一个高度容错性的系统,适合部署在廉价的机器上。HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。那大数据中HDFS 存储的机制怎样的呢?
12440
2019-08-14 10:19:54
大数据疑难解答 Hbase内部是什么机制?
众所周知,HBase是一个非关系型数据库,它的特征是分布式、列式存储、开源和版本化。无论是在大数据的面试中,还是大数据的工作中,这都是一个经常会出现的难题,然而却很少人能够说清Hbase内部机制。今天我们就花些时间聊聊Hbase内部是什么机制。
7370
2019-10-17 18:13:28
云计算的核心技术有哪些?五大核心技术深入分析
云计算在技术上是通过虚拟化技术架构起来的数据服务中心,实现对存储、计算、内存、网络等资源化,按照用户需求进行动态分配。用户不再是在传统的物理硬件资源上享受服务,而改变为在虚拟资源层上构建自己的应用。
27334
2019-10-22 09:00:44
数据挖掘的步骤有哪些?
所谓数据挖掘就是从海量的数据中,找到隐藏在数据里有价值的信息。因为这个数据是隐式的,因此想要挖掘出来并不简单。那么,如何进行数据挖掘呢?数据挖掘的步骤有哪些呢?一般来讲,数据挖掘需要经历数据收集、数据可视化、数据预处理、准备模型输入以及训练模型五大步骤,下面让我们来详细分析一下吧!
6167
2020-08-10 15:32:38