在线客服
扫描二维码
下载博学谷APP
扫描二维码
关注博学谷微信公众号
数据分析对于现代社会的影响无疑是巨大的,它在各行各业都得到的广泛应用。的确,数据分析可以帮助我们做出一些决断,以便于我们采取科学适当的行动。可是数据分析真的百分之百可靠吗?本文就来和大家谈谈数据分析的四大误区:选取的样本容量有误、 错判因果关系、忽略沉默用户、过度依赖数据。

在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。因为数据的有效性和客观性,让数据变成了发掘问题本质,寻找事物规律所需要用到的最有利的手段之一。但是,数据虽然客观,有时也是会骗人的。在与数据打交道的过程中,我们可能经常会犯一些错误,导致分析的结论出现较大的偏颇。
误区一:选取的样本容量有误
08年奥运会上,姚明的三分投篮命中率为100%,科比的三分投篮命中率为32%,那么是不是说姚明的三分投篮命中率要比科比高?显然不能这么说,因为那届奥运会,姚明只投了一个三分球,科比投了53个。因此,在做数据对比分析时,对于样本的选取,需要制定相同的抽样规则,减少分析结论的偏差性。
误区二:错判因果关系
某电商网站数据显示,商品评论的数量与商品销售额成正比。即一个商品评论数量越多,那么该商品的销售额也会越高。假如我们认为评论多是销量高的原因的话,数据分析的结论就会指导我们,需要创造更多的商品评论来带动商品销量。但如果真的这样操作的话,就会发现很多商品的销量对于评论的敏感度并不一样,甚至很多商品销量很高,但与其评论的多少毫无关系。这里,我们就需要思考,评论真的是影响销量的必然因素吗?
除了评论之外,影响销量的因素,还有其质量、价格、活动等,如果能完整的认识到这些因素,那我们要拉升商品销量,首先会需要先从其他角度来考虑,而非评论入手。因此,在分析数据的时候,正确判断数据指标的逻辑关系应该找几者之间的相关关系而不是因果关系。
误区三:忽略沉默用户
用户迫切需要的需求≠产品的核心需求。产品经理在听到部分用户反馈的时候就做出决策,花费大量的时间开发相应的功能,往往结果,可能这些功能只是极少部分用户的迫切需求,而大部分用户并不在乎。忽略沉默用户,没有全盘的考虑产品大部分目标用户的核心需求,可能造成人力物力的浪费,更有甚者,会错失商业机会。
误区四:过度依赖数据
过度依赖数据,一方面,会让我们做很多没有价值的数据分析;另一方面,也会限制产品经理本来应有的灵感和创意。比如,分析马车的数据,很可能我们得出的结论,是用户需要一匹更快的马车。如果过度依赖数据,局限了我们的思维,就很有可能不会有汽车的诞生。很多优秀甚至伟大的产品决策,并非通过数据发现的,而是一个产品经理综合智慧的体现。所以,数据是客观的,但是,解读数据的人是主观的。只有正确的认识数据,才能正确的利用数据。在做数据分析时,对待数据我们必须要有一个求证的心态,并需要时刻警惕那些被人处理过的二手数据。
以上就是做数据分析时的四大误区,大家都踩过几个呢?不论怎么说,数据分析本身只是工具,要发挥它的最大价值,还得看大家怎样正确的使用。希望这份避坑指导都对大家有用。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
你那么努力为什么还又穷又忙?数据分析直播课预告
如果说:“有什么事比穷更可怕?”那一定是“又穷又忙!”加班熬夜写方案,优化产品,留存率却不见提升;公众号文章不断优化,新增用户也是寥寥无几;社群不停维护,优惠不断增加,用户依然不买账;……
6288
2019-08-21 15:55:07
学数据挖掘技术能做哪些工作?可以从事哪些行业?
学数据挖掘技术能做哪些工作?可以从事哪些行业?随着大数据时代的来临,大数据早已渗透我们生活和工作的方方面面。尤其是数据挖掘更是被各行各业广泛应用,像互联网、电商、金融、医疗等等行业对掌握数据挖掘技术的人才更是有着相当优渥的报酬。至于数据挖掘的相关岗位更是选择多多,下面来具体了解一下吧!
10852
2019-10-15 10:29:58
大数据的分析软件工具有哪些?都有什么用?
大数据的分析软件工具有哪些?都有什么用?总的来说,大数据有各种各样的分析软件工具,本文要跟大家介绍的是在一些领域被高频率使用,且不可缺少的大数据分析利器,即Excel、SPSS、SAS和stata。正是有了这些软件工具的存在,大数据的分析工作才能更加有效率。
7918
2019-10-16 16:50:27
数据分析师岗位要掌握哪些编程语言?
数据分析师工作流程简化描述成数据获取整理-数据分析-生成数据报告几个关键环节,数据分析师最常用的工具Excel和Python,Excel适用一些数据量并不大还有它的重复性并不算强的大量的工作场景,使用Python语言对大量的数据进行更深入、更强大的数据分析。
5752
2021-03-19 16:36:50
2022年数据与分析有哪些新趋势?关注哪些动态?
今年数据和分析主要趋势:激活多样性和活力使用自适应AI系统推动增长和创新同时应对全球市场的波动;增强人员能力和决策以提供由业务模块化组件创建的丰富的、情境驱动的分析;将信任制度化以大规模地实现数据和分析的价值。管理AI风险并实施跨分布式系统、边缘环境和新兴生态系统的互联治理。
3439
2022-04-27 15:53:36
